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HOCHSCHILD PRODUCTS AND GLOBAL NON-ABELIAN

COHOMOLOGY FOR ALGEBRAS. APPLICATIONS

A. L. AGORE AND G. MILITARU

Abstract. Let A be a unital associative algebra over a field k, E a vector space and
π : E → A a surjective linear map with V = Ker(π). All algebra structures on E

such that π : E → A becomes an algebra map are described and classified by an
explicitly constructed global cohomological type object GH

2 (A, V ). Any such algebra
is isomorphic to a Hochschild product A⋆V , an algebra introduced as a generalization
of a classical construction. We prove that GH

2 (A, V ) is the coproduct of all non-
abelian cohomologies H

2 (A, (V, ·)). The key object GH
2 (A, k) responsible for the

classification of all co-flag algebras is computed. All Hochschild products A⋆k are also
classified and the automorphism groups AutAlg(A⋆k) are fully determined as subgroups
of a semidirect product A∗

⋉
(

k∗
×AutAlg(A)

)

of groups. Several examples are given
as well as applications to the theory of supersolvable coalgebras or Poisson algebras. In
particular, for a given Poisson algebra P , all Poisson algebras having a Poisson algebra
surjection on P with a 1-dimensional kernel are described and classified.

Introduction

Introduced at the level of groups by Hölder [28], the extension problem is a famous and
still open problem to which a vast literature was devoted (see [1] and the references
therein). Fundamental results obtained for groups [1, 15, 37] served as a model for
studying the extension problem for several other fields such as Lie/Leibniz algebras
[14, 31], super Lie algebras [6], associative algebras [17, 26], Hopf algebras [8], Poisson
algebras [24], Lie-Rinehart algebras [12, 25] etc. The extension problem is one of the main
tools for classifying ’finite objects’ and has been a source of inspiration for developing
cohomology theories in all fields mentioned above. We recall the extension problem using
the language of category theory. Let C be a category having a zero (i.e. an initial and
final) object 0 and for which it is possible to define an exact sequence. Given A, B two
fixed objects of C, the extension problem consists of the following question:

Describe and classify all extensions of A by B, i.e. all triples (E, i, π) consisting of an
object E of C and two morphisms in C that fit into an exact sequence of the form:

0 // B
i

// E
π

// A // 0
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2 A. L. AGORE AND G. MILITARU

Two extensions (E, i, π) and (E′, i′, π′) of A by B are called equivalent if there exists
an isomorphism ϕ : E → E′ in C that stabilizes B and co-stabilizes A, i.e. ϕ ◦ i = i′

and π′ ◦ ϕ = π. The answer to the extension problem is given by explicitly computing
the set Ext(A, B) of all equivalence classes of extensions of A by B via this equiva-
lence relation. The simplest case is that of extensions with an ’abelian’ kernel B for
which a Schreier type theorem proves that all extensions of A by an abelian object B
are classified by the second cohomology group H2(A, B) - the result is valid for groups,
Lie/Leibniz/associative/Poisson/Hopf algebras, but the construction of the second co-
homology group is different for each of the above categories [8, 14, 15, 26, 37]. The
difficult part of the extension problem is the case when B is not abelian: as a general
principle, the Schreier type theorems remain valid, but this time the classifying object of
all extensions of A by B is not the cohomology group of a given complex anymore, but
only a pointed set called the non-abelian cohomology H2

nab(A, B). For its construction
in the case of groups we refer to [7], while for Lie algebras to [19] where it was proved
that the non-abelian cohomology H2

nab(A, B) is the Deligne groupoid of a suitable differ-
ential graded Lie algebra. The difficulty of the problem consists in explicitly computing
H2

nab(A, B): lacking an efficient cohomology tool as in the abelian case [35, 38], it needs to
be computed ’case by case’ using different computational and combinatorial approaches.

This paper deals, at the level of associative algebras, with a generalization of the ex-
tension problem, called the global extension (GE) problem, introduced recently in [3, 33]
for Poisson/Leibniz algebras as a categorical dual of the extending structures problem
[2, 4, 5]. The GE-problem can be formulated for any category C using a simple idea:
in the classical extension problem we drop the hypothesis ’B is a fixed object in C’ and
replace it by a weaker one, namely ’B has a fixed dimension’. For example, if C is the
category of unital associative algebras over a field k, the GE-problem can be formulated
as follows: for a given algebra A, classify all associative algebras E for which there exists
a surjective algebra map E → A → 0 whose kernel has a given dimension c as a vector
space. Of course, any such algebra has A×V as the underlying vector space, where V is
a vector space such that dim(V ) = c. Among several equivalent possibilities for writing
down the GE-problem for algebras, we prefer the following:

Let A be a unital associative algebra, E a vector space and π : E → A a linear epi-
morphism of vector spaces. Describe and classify the set of all unital associative algebra
structures that can be defined on E such that π : E → A becomes a morphism of algebras.

By classification of two algebra structures ·E and ·′E on E we mean the classification
up to an isomorphism of algebras (E, ·E) ∼= (E, ·′E) that stabilizes V := Ker(π) and
co-stabilizes A: we shall denote by Gext(A, E) the set of equivalence classes of all
algebra structures on E such that π : E → A is an algebra map. Let us explain now
the significant differences between the GE-problem and the classical extension problem
for associative algebras whose study was initiated in [17, 26]. Let (E, ·E) be a unital
algebra structure on E such that π : (E, ·E) → A is an algebra map. Then (E, ·E) is
an extension of the unital algebra A by the associative algebra V = Ker(π), which is a
non-unital subalgebra (in fact a two-sided ideal) of (E, ·E). However, the multiplication
on V is not fixed from the input data, as in the case of the classical extension problem:
it depends essentially on the algebra structures on E which we are looking for. Thus the
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classical extension problem is in some sense the ’local’ version of the GE-problem. The
partial answer and the best result obtained so far for the classical extension problem was
given in [26, Theorem 6.2]: all algebra structures ·E on E such that V is a two-sided
ideal of null square (i.e. x ·E y = 0, for all x, y ∈ V - that is V is an ’abelian’ algebra)
are classified by the second Hochschild cohomological group H2(A, V ). The result, as
remarkable as it is, has its limitations: for example, if A := Mn(k) is the algebra of
n× n-matrices then there is no associative algebra E of dimension 1 + n2 for which we
have a surjective algebra map A → Mn(k) with a null square kernel - however, there is
a large family of such algebras with a projection on Mn(k), one of them being of course
the direct product of algebras Mn(k)× k (more details are given in Example 2.13). This
example provides enough motivation for studying the GE-problem and the fact that it
covers the missing part in the classical Hochschild approach of the extension problem.

The paper is organized as follows. Section 1 gives the theoretical answer to the GE-
problem in three steps. First of all, in Proposition 1.2 we introduce a new product
A ⋆ V = A ⋆(⊳, ⊲, ϑ, ·) V , associated to an algebra A and a vector space V connected by
two ’actions’ of A on V , a ’cocycle’ and an associative multiplication · on V satisfying
several axioms. We call the algebra A ⋆ V the Hochschild product since, in the particu-
lar case when · is the trivial multiplication on V the above product reduces to the one
introduced by Hochschild in [26]: in this case the axioms involved in the construction
of A ⋆ V come down to the fact that V is an A-bimodule and ϑ : A × A → V is an
usual normalized 2-cocycle. On the other hand, if the cocycle ϑ is the trivial map then
the associated Hochschild product A⋆V is just the semidirect product A#V of algebras
and the corresponding axioms show that (V, ·) is an associative algebra in the monoidal
category (AMA, − ⊗A −, A) of A-bimodules. The canonical surjection A ⋆ V → A is
an algebra map having the kernel V . Proposition 1.4 proves the converse: any algebra
structure ·E which can be defined on the vector space E such that π : (E, ·E) → A
is a morphism of algebras is isomorphic to a Hochschild product A ⋆ V . Based on
these results and a technical lemma, the theoretical answer to the GE-problem is given
in Theorem 1.9: the classifying set Gext(A, E) is parameterized by an explicitly con-
structed global cohomological object GH

2 (A, V ) and the bijection between the elements
of GH

2 (A, V ) and Gext(A, E) is given. On the route, Corollary 1.5 proves that any
finite dimensional algebra is isomorphic to an iteration of Hochschild products of the
form

(

· · ·
(

(S ⋆ V1) ⋆ V2
)

⋆ · · · ⋆ Vt
)

, where S is a finite dimensional simple algebra and
V1, · · · , Vt are finite dimensional vector spaces. Corollary 1.11 provides a decomposition
of GH

2 (A, V ) as the coproduct of all non-abelian cohomologies H
2
(

A, (V, ·V )
)

, which
are classifying objects for the extensions of A by all associative algebra structures · on
V – the second Hochschild cohomological group H2 (A, V ) is the most elementary piece
among all components of GH

2 (A, V ). Computing the classifying object GH
2 (A, V ) is a

highly nontrivial task: ifA is finite dimensional and V := kn this object parameterizes the
equivalence classes of all unital associative algebras of dimension n+dim(A) that admit
an algebra surjection on A. In Section 2 we shall identify a way of computing this object
for a class of algebras called co-flag algebras over A, i.e. algebras E that have a finite

chain of surjective morphisms of algebras An := E
πn−→ An−1 · · · π2−→ A1

π1−→ A0 := A,
such that dim(Ker(πi)) = 1, for all i = 1, · · · , n. All co-flag algebras over A can be
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completely described and classified by a recursive reasoning whose key step is given in
Proposition 2.6 and Corollary 2.7 whereGH

2 (A, k) is computed and all Hochschild prod-
ucts A ⋆ k are described by generators and relations. The less restrictive classification
of these algebras, i.e. only up to an agebra isomorphism, is given in Theorem 2.8 where
the second classifying object HOC (A, k) is computed: it parameterizes the isomorphism
classes of all Hochschild products A ⋆ k, that is, it classifies up to an isomorphism, all
algebras B which admit a surjective algebra map B → A with a 1-dimensional kernel.
As a bonus of our approach, the automorphism groups AutAlg(A⋆k) are fully determined
in Corollary 2.12 as subgroups of a semidirect product A∗

⋉
(

k∗×AutAlg(A)
)

of groups.
At this point we should mention that determining the structure of the automorphism
group of a given algebra is an old problem, intensively studied and very difficult, arising
from invariant theory (see [10, 13] and the references therein). Several examples where
both classifying objects GH

2 (A, k) and HOC (A, k) are explicitly computed for different
algebras A are worked out in details. For instance, if A = k[Cn], is the group algebra
of the cyclic group Cn of order n, then GH

2 (k[Cn], k) ∼=
(

Un(k) × Un(k)
)

⊔ k∗, where
Un(k) is the group of n-th roots of unity in k. The classification of these algebras, by de-
scribing the classifying object HOC (k[Cn], k), is also indicated and reduces the question
to a challenging number theory problem which depends heavily on the arithmetics of n
and the base field k – it is also related to two intensively studied problems in the theory
of group rings, namely the description of all invertible elements and the automorphism
group of a group algebra [23, 32, 34]. An intriguing example is A := Tn(k), the algebra
of upper triangular (n×n)-matrices. The global cohomological object GH

2 (Tn(k), k) is
computed in Example 2.19 being described by a very interesting set of matrices of trace
0. In particular, |HOC (T2(k), k)| = 8, i.e. up to an isomorphism of algebras there exist
exactly eight 4-dimensional algebras that have an algebra projection on the Heisenberg
algebra T2(k). Applications for coalgebras and Poisson algebras are given in Section 3
based on the same idea: namely, that of rephrasing the concepts and results of this
paper for coalgebras (resp. Poisson manifolds) via two different contravariant functors
(−)∗ := Homk (−, k) (resp. C∞(−)) from the category of coalgebras (resp. Poisson
manifolds) to the category of algebras (resp. Poisson algebras). Having the theory of
supersolvable Lie algebras [9] as a source of inspiration we introduce the concept of a
supersolvable coalgebra in such a way that a coalgebra C is supersolvable if and only if
the convolution algebra C∗ is a co-flag algebra. In particular, Corollary 2.18 classifies all
3-dimensional supersolvable coalgebras over a field of characteristic 6= 2. On the other
hand, for a given Poisson algebra P , Theorem 3.3 classifies up to an isomorphism all
Poisson algebras Q which admit a Poisson surjection Q → P → 0 with a 1-dimensional
kernel. The result is the algebraic counterpart of the classification problem of all Poisson
manifolds containing a given Poisson manifold M of codimension 1. As an example,
we show that there exist exactly six families of 4-dimensional Poisson algebras with a
Poisson algebra surjection of the Heisenberg-Poisson algebra H(3, k). For applications
and further motivation for studying Poisson algebras we refer to [21, 22, 30].
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1. The global extension problem

Notations and terminology. For two sets X and Y we shall denote by X ⊔ Y their
coproduct in the category of sets, i.e. X ⊔ Y is the disjoint union of X and Y . Unless
otherwise specified, all vector spaces, linear or bilinear maps are over an arbitrary field
k. A map f : V →W between two vector spaces is called the trivial map if f(v) = 0, for
all v ∈ V . By an algebra A we always mean a unital associative algebra over k whose
unit will be denoted by 1A. All algebra maps preserve units and any left/right A-module
is unital. For an algebra A, AutAlg(A) denotes the group of algebra automorphisms of
A, Alg (A, k) is the space of all algebra maps A→ k while AMA stands for the category
of A-bimodules. If (V, ⊲, ⊳) ∈ AMA is an A-bimodule, then the trivial extension of A
by V is the algebra A×V , with the multiplication defined for any a, b ∈ A, x, y ∈ V by:

(a, x) · (b, y) :=
(

ab, a ⊲ y + x ⊳ b
)

(1)

Let A be an algebra, E a vector space, π : E → A a linear epimorphism of vector spaces
with V := Ker(π) and denote by i : V → E the inclusion map. We say that a linear map
ϕ : E → E stabilizes V (resp. co-stabilizes A) if the left square (resp. the right square)
of the following diagram

V
i

//

Id
��

E
π

//

ϕ

��

A

Id
��

V
i

// E
π

// A

(2)

is commutative. Two unital associative algebra structures · and ·′ on E such that π :
E → A is a morphism of algebras are called cohomologous and we denote this by (E, ·) ≈
(E, ·′), if there exists an algebra map ϕ : (E, ·) → (E, ·′) which stabilizes V and co-
stabilizes A. We can easily prove that any such morphism is bijective and thus, ≈ is
an equivalence relation on the set of all algebra structures on E such that π : E → A
is an algebra map and we denote by Gext (A, E) the set of all equivalence classes via
the equivalence relation ≈. Gext (A, E) is the classifying object for the GE-problem. In
what follows we will prove that Gext (A, E) is parameterized by a global cohomological
object GH

2 (A, V ) which will be explicitly constructed. To start with, we introduce the
following:

Definition 1.1. Let A be an algebra and V a vector space. A Hochschild data of A by
V is a system Θ(A,V ) = (⊲, ⊳, ϑ, ·) consisting of four bilinear maps

⊲ : A× V → V, ⊳ : V ×A→ V, ϑ : A×A→ V, · : V × V → V

For a Hochschild data Θ(A,V ) = (⊲, ⊳, ϑ, ·) we denote by A ⋆ V = A ⋆(⊳, ⊲, ϑ, ·) V the
vector space A× V with the multiplication defined for any a, b ∈ A and x, y ∈ V by:

(a, x) ⋆ (b, y) := (ab, ϑ(a, b) + a ⊲ y + x ⊳ b+ x · y) (3)

A⋆V is called the Hochschild product associated to Θ(A,V ) if it is an associative algebra
with the multiplication given by (3) and the unit (1A, 0V ). In this case Θ(A,V ) =
(⊲, ⊳, ϑ, ·) is called a Hochschild system of A by V . The multiplication defined by (3) is
more general than the one appearing in the proof of [26, Theorem 6.2] – the latter arises
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as a special case of A ⋆ V for · : V × V → V the trivial map, that is x · y = 0, for all
x, y ∈ V . Moreover, the GE-problem is the dual, in the sense of category theory, of the
extending structures problem studied for algebras in [5]: hence, from this viewpoint the
Hochschild product A⋆ V can be seen as a categorical dual of the unified product A⋉ V
introduced in [5, Theorem 2.2]. The necessary and sufficient conditions for A ⋆ V to be
a Hochschild product are given in the following:

Proposition 1.2. Let A be an algebra, V a vector space and Θ(A,V ) = (⊲, ⊳, ϑ, ·)
a Hochschild data of A by V . Then A ⋆ V is a Hochschild product if and only if the
following compatibility conditions hold for any a, b, c ∈ A and x, y ∈ V :

(H0) ϑ(a, 1A) = ϑ(1A, a) = 0, x ⊳ 1A = x, 1A ⊲ x = x
(H1) (x · y)⊳ a = x · (y ⊳ a)
(H2) (x⊳ a) · y = x · (a ⊲ y)
(H3) a ⊲ (x · y) = (a ⊲ x) · y
(H4) (a ⊲ x)⊳ b = a ⊲ (x⊳ b)
(H5) ϑ(a, bc)− ϑ(ab, c) = ϑ(a, b)⊳ c− a ⊲ ϑ(b, c)
(H6) (ab) ⊲ x = a ⊲ (b ⊲ x)− ϑ(a, b) · x
(H7) x⊳ (ab) = (x⊳ a)⊳ b− x · ϑ(a, b)
(H8) The bilinear map · : V × V → V is associative.

Before going into the proof, we make some comments on the relations (H0)-(H8). The
first relation in (H0) together with (H5) show that ϑ is a normalized Hochschild 2-
cocycle. (H6) and (H7) are deformations of the usual left and respectively right A-module
conditions: together with (H4) and the last two relations of (H0) they measure how far
(V, ⊲, ⊳) is from being an A-bimodule. Finally, axioms (H1)-(H3) are compatibilities
between the associative multiplication · on V and the ’actions’ (⊲, ⊳) of A on V which
are missing in the classical theory [26] since · is the trivial map and thus they are
automatically fulfilled. When ϑ is the trivial map, axioms (H1)-(H3) together with
(H6)-(H8) imply that (V, ·) is an associative algebra in the monoidal category AMA =
(AMA, −⊗A −, A) of A-bimodules (see Example 1.3 below).

Proof. To start with, we can easily prove that (1A, 0V ) is the unit for the multiplication
defined by (3) if and only if (H0) holds. The rest of the proof relies on a detailed analysis
of the associativity condition for the multiplication given by (3). Since in A⋆V we have
(a, x) = (a, 0) + (0, x), it follows that the associativity condition holds if and only if it
holds for all generators of A⋆V , i.e. for the set {(a, 0) | a ∈ A}∪{(0, x) | x ∈ V }. To save
space we will illustrate only a few cases, the rest of the details being left to the reader.
For instance, the associativity condition for the multiplication given by (3) holds in {(0,
x), (0, y), (a, 0)} if and only if (H1) holds. Similarly, the associativity condition holds
in {(0, x), (a, 0), (0, y)} if and only if (H2) holds while, the associativity condition
holds in {(0, x), (0, y), (0, z)} if and only if · : V × V → V is associative. �

From now on a Hochschild system of A by V will be viewed as a system of bilinear maps
Θ(A,V ) = (⊲, ⊳, ϑ, ·) satisfying the axioms (H0)-(H8) and we denote by HS (A, V ) the
set consisting of all Hochschild systems of A by V .
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Examples 1.3. 1. By applying Proposition 1.2 we obtain that a Hochschild data
(⊲, ⊳, ϑ, ·) for which · is the trivial map is a Hochschild system if and only if (V, ⊲, ⊳) is
an A-bimodule and ϑ : A × A → V is a normalized 2-cocycle. Furthermore, if ϑ is also
the trivial map, then the associated Hochschild product is just the trivial extension of
the algebra A by the A-bimodule V as defined by (1).

2. A Hochschild system Θ(A,V ) = (⊲, ⊳, ϑ, ·) for which ϑ is the trivial map is called a
semidirect system of A by V . In this case ϑ will be omitted when writing down Θ(A,V )
and axioms in Proposition 1.2 take a simplified form: Θ(A,V ) = (⊲, ⊳, ·) is a semidirect
system if and only if (V, ⊲, ⊳) ∈ AMA is an A-bimodule, (V, ·) is an associative algebra
and

(x · y)⊳ a = x · (y ⊳ a), a ⊲ (x · y) = (a ⊲ x) · y, (x⊳ a) · y = x · (a ⊲ y) (4)

for all a ∈ A, x, y ∈ V . The Hochschild product associated to a semidirect system
Θ(A,V ) = (⊲, ⊳, ·) is called a semidirect product of algebras and will be denoted by
A#V := A#(⊳, ⊲, ·)V . The terminology will be motivated below in Corollary 1.6: exactly
as in the case of groups or Lie algebras, the semidirect product of algebras describes split
epimorphisms in the category of algebras. We will rephrase the axioms of a semidirect
system Θ(A,V ) = (⊲, ⊳, ·) of A by V using the language of monoidal categories. The
first and the second axioms of (4) are equivalent to the fact that the bilinear map
· : V × V → V is an A-bimodule map, while the last one is the same as saying that the
map is A-balanced. The space of these maps is in one-to-one correspondence with the
set of all A-bimodule maps V ⊗A V → V . This fact together with the other two axioms
can be rephrased as follows: Θ(A,V ) = (⊲, ⊳, ·) is a semidirect system of A by V if and
only if (V, ·) is a (not-necessarily unital) associative algebra in the monoidal category

AMA = (AMA, −⊗A −, A) of A-bimodules.

The Hochschild product is the tool to answer the GE-problem. Indeed, first we observe
that the canonical projection πA : A ⋆ V → A, πA(a, x) := a is a surjective algebra map
with kernel {0} × V ∼= V . Hence, the algebra A ⋆ V is an extension of the algebra A by
the associative algebra (V, ·) via

0 // V
iV

// A ⋆ V
πA

// A // 0 (5)

where iV (x) = (0, x). Conversely, we have:

Proposition 1.4. Let A be an algebra, E a vector space and π : E → A an epimorphism
of vector spaces with V = Ker(π). Then any algebra structure · which can be defined on
the vector space E such that π : (E, ·) → A becomes a morphism of algebras is isomorphic
to a Hochschild product A⋆ V and moreover, the isomorphism of algebras (E, ·) ∼= A⋆ V
can be chosen such that it stabilizes V and co-stabilizes A.

Thus, any unital associative algebra structure on E such that π : E → A is an algebra
map is cohomologous to an extension of the form (5).

Proof. Let · be an algebra structure of E such that π : (E, ·) → A is an algebra map.
Since k is a field we can pick a k-linear section s : A → E of π, i.e. π ◦ s = IdA and
s(1A) = 1E . Then ϕ : A × V → E, ϕ(a, x) := s(a) + x is an isomorphism of vector
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spaces with the inverse ϕ−1(y) =
(

π(y), y − s(π(y))
)

, for all y ∈ E. Using the section s
we define three bilinear maps given for any a, b ∈ A and x ∈ V by:

⊳ = ⊳s : V ×A→ V, x ⊳ a := x · s(a)
⊲ = ⊲s : A× V → V, a ⊲ x := s(a) · x
ϑ = ϑs : A×A→ V, ϑ(a, b) := s(a) · s(b)− s(ab)

and let ·V : V × V → V be the restriction of · at V , i.e. x ·V y := x · y, for all x, y ∈ V .
We can easily see that they are well-defined maps. The key step is the following: using
the system (⊳, ⊲, ϑ, ·V = ·) connecting A and V we can prove that the unique algebra
structure ⋆ that can be defined on the direct product of vector spaces A× V such that
ϕ : A× V → (E, ·) is an isomorphism of algebras is given by:

(a, x) ⋆ (b, y) := (ab, ϑ(a, b) + a ⊲ y + x ⊳ b+ x · y) (6)

for all a, b ∈ A, x, y ∈ V . Indeed, let ⋆ be such an algebra structure on A× V . Then:

(a, x) ⋆ (b, y) = ϕ−1
(

ϕ(a, x) · ϕ(b, y)
)

= ϕ−1
(

(s(a) + x) · (s(b) + y)
)

= ϕ−1(s(a) · s(b) + s(a) · y + x · s(b) + x · y)
=

(

ab, s(a) · s(b)− s(ab) + s(a) · y + x · s(b) + x · y
)

=
(

ab, ϑ(a, b) + a ⊲ y + x ⊳ b+ x · y)
as needed. Thus, ϕ : A ⋆ V → (E, ·) is an isomorphism of algebras and we can see that
it stabilizes V and co-stabilizes A. �

Using Proposition 1.4 we obtain the following result concerning the structure of finite
dimensional algebras which indicates the crucial role played by Hochschild products.
We can survey all algebras of a given dimension if we are able to compute various
Hochschild systems starting with a simple algebra (whose structure is well-known due
to the Wederburn-Artin theorem) and the associated Hochschild products. It is the
associative algebra counterpart of a similar result from group theory [36, pages 283-284].

Corollary 1.5. Any finite dimensional algebra is isomorphic to an iteration of Hochschild

products of the form
(

· · ·
(

(S ⋆V1) ⋆V2
)

⋆ · · · ⋆Vt
)

, where S is a finite dimensional simple

k-algebra, t is a positive integer and V1, · · · , Vt are finite dimensional vector spaces.

Proof. Let A be an algebra of dimension n. The proof goes by induction on n. If n = 1
then A ∼= k ∼= k ⋆ {0} and k is a simple algebra. Assume now that n > 1. If A is
simple there is nothing to prove. On the contrary, if A has a proper two-sided ideal
{0} 6= Vt 6= A, let π : A → A1 := A/Vt be the canonical projection. It follows from
Proposition 1.4 that A ∼= A1 ⋆Vt, for some Hochschild system of A1 by Vt. If A1 is simple
the proof is finished; if A1 is not simple, we apply induction since dimk(A1) < n. �

The semidirect products of algebras characterize split epimorphism in this category:

Corollary 1.6. An algebra map π : B → A is a split epimorphism in the category
of algebras if and only if there exists an isomorphism of algebras B ∼= A#V , where
V = Ker(π) and A#V is a semidirect product of algebras.
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Proof. First we note that for a semidirect product A#V , the canonical projection pA :
A#V → A, pA(a, x) = a has a section that is an algebra map defined by sA(a) = (a, 0),
for all a ∈ A. Conversely, let s : A→ B be an algebra map such that π ◦ s = IdA. Then,
the bilinear map ϑs constructed in the proof of Proposition 1.4 is the trivial map and
hence the corresponding Hochschild product A ⋆ V is a semidirect product A#V . �

Proposition 1.4 shows that the classification part of the GE-problem reduces to the
classification of all Hochschild products associated to all Hochschild systems of A by V .
This is what we will do next.

Lemma 1.7. Let Θ(A,V ) = (⊲, ⊳, ϑ, ·) and Θ′(A,V ) = (⊲′, ⊳′, ϑ′, ·′) be two Hochschild
systems and A⋆V , respectively A⋆′V , the corresponding Hochschild products. Then there
exists a bijection between the set of all morphisms of algebras ψ : A ⋆ V → A ⋆′ V which
stabilize V and co-stabilize A and the set of all linear maps r : A → V with r(1A) = 0
satisfying the following compatibilities for all a, b ∈ A, x, y ∈ V :

(CH1) x · y = x ·′ y;
(CH2) x ⊳ a = x ⊳′ a+ x ·′ r(a);
(CH3) a ⊲ x = a ⊲′ x+ r(a) ·′ x;
(CH4) ϑ(a, b) + r(ab) = ϑ′(a, b) + a ⊲′ r(b) + r(a)⊳′ b+ r(a) ·′ r(b)

Under the above bijection the morphism of algebras ψ = ψr : A⋆V → A⋆′V corresponding
to r : A→ V is given by ψ(a, x) = (a, r(a)+x), for all a ∈ A, x ∈ V . Moreover, ψ = ψr
is an isomorphism with the inverse given by ψ−1

r = ψ−r.

Proof. It is an elementary fact that a linear map ψ : A × V → A × V stabilizes V and
co-stabilizes A if and only if there exists a uniquely determined linear map r : A → V
such that ψ(a, x) = (a, r(a) + x), for all a ∈ A, x ∈ V . Let ψ = ψr be such a linear map.
We will prove that ψ : A ⋆ V → A ⋆′ V is an algebra map if and only if r(1A) = 0 and
the compatibility conditions (CH1)-(CH4) hold. To start with it is straightforward to
see that ψ preserve the unit (1A, 0) if and only if r(1A) = 0. The proof will be finished
if we check that the following compatibility holds for all generators of A× V :

ψ
(

(a, x) ⋆ (b, y)
)

= ψ
(

(a, x)
)

⋆′ ψ
(

(b, y)
)

(7)

By a straightforward computation it follows that (7) holds for the pair (a, 0), (b, 0) if and
only if (CH4) is fulfilled while (7) holds for the pair (0, x), (a, 0) if and only if (CH2) is
satisfied. Finally, (7) holds for the pair (a, 0), (0, x) and respectively (0, x), (0, y) if and
only if (CH3) and respectively (CH1) hold. �

Lemma 1.7 leads to the following:

Definition 1.8. Let A be an algebra and V a vector space. Two Hochschild systems
Θ(A,V ) = (⊲, ⊳, ϑ, ·) and Θ′(A,V ) = (⊲′, ⊳′, ϑ′, ·′) are called cohomologous, and we
denote this by Θ(A,V ) ≈ Θ′(A,V ), if and only if · = ·′ and there exists a linear map
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r : A→ V such that r(1A) = 0 and for any a, b ∈ A, x, y ∈ V we have:

x ⊳ a = x ⊳′ a+ x ·′ r(a) (8)

a ⊲ x = a ⊲′ x+ r(a) ·′ x (9)

ϑ(a, b) = ϑ′(a, b)− r(ab) + a ⊲′ r(b) + r(a)⊳′ b+ r(a) ·′ r(b) (10)

As a conclusion of this section, we obtain the theoretical answer to the GE-problem:

Theorem 1.9. Let A be an algebra, E a vector space and π : E → A a linear epi-
morphism of vector spaces with V = Ker(π). Then ≈ defined in Definition 1.8 is an
equivalence relation on the set HS(A,V ) of all Hochschild systems of A by V . If we
denote by GH

2 (A, V ) := HS(A,V )/ ≈, then the map

GH
2 (A, V ) → Gext (A, E), (⊲, ⊳, ϑ, ·) 7−→ A ⋆(⊳, ⊲, ϑ, ·) V (11)

is bijective, where (⊲, ⊳, ϑ, ·) denotes the equivalence class of (⊲, ⊳, ϑ, ·) via ≈.

Proof. Follows from Proposition 1.2, Proposition 1.4 and Lemma 1.7. �

Computing the classifying object GH
2 (A, V ), for a given algebra A and a given vector

space V is a very difficult task. The first step in decomposing this object is suggested
by the way the equivalence relation ≈ was introduced in Definition 1.8: it shows that
two different associative algebra structures · and ·′ on V give two different equivalence
classes of the relation ≈ on HS(A,V ). Let us fix ·V an associative multiplication on
V and denote by HS·V (A, V ) the set of all triples

(

⊳, ⊲, ϑ
)

such that
(

⊲, ⊳, ϑ, ·V
)

∈
HS(A,V ). Two triples

(

⊳, ⊲, ϑ
)

and
(

⊳′, ⊲′, ϑ′
)

∈ HS·V (A, V ) are ·V -cohomologous and

we denote this by
(

⊳, ⊲, ϑ
)

≈·V

(

⊳′, ⊲′, ϑ′
)

if there exists a linear map r : A → V such
that r(1A) = 0 and the compatibility conditions (8)-(10) are fulfilled for ·′ = ·V . Then
≈·V is an equivalence relation on HS·V (A, V ) and we denote by H

2
(

A, (V, ·V )
)

the

quotient set HS·V (A, V )/ ≈·V . The non-abelian cohomology H
2
(

A, (V, ·V )
)

classifies
all extensions of the unital associative algebra A by a fixed associative algebra (V, ·V ).
This can be seen as a Schreier type theorem for associative algebras: we mention that [26,
Theorem 6.2] (see also [35, Proposition 3.7]) follows as a special case of Corollary 1.10 if
we let ·V to be the trivial map.

Corollary 1.10. Let A be a unital associative algebra and (V, ·V ) an associative multi-
plication on V . Then, the map

H
2
(

A, (V, ·V )
)

→ Ext (A, (V, ·V )), (⊲, ⊳, ϑ) 7−→ A ⋆(⊳, ⊲, ϑ, ·V ) V (12)

is bijective, where Ext (A, (V, ·V )) is the set of equivalence classes of all unital associa-

tive algebras that are extensions of the algebra A by (V, ·V ) and (⊲, ⊳, ϑ) denotes the
equivalence class of (⊲, ⊳, ϑ) via ≈l.

The above considerations give also the following decomposition of GH
2 (A, V ):

Corollary 1.11. Let A be an algebra, E a vector space and π : E → A an epimorphism
of vector spaces with V = Ker(π). Then

GH
2 (A, V ) = ⊔·V H

2
(

A, (V, ·V )
)

(13)
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where the coproduct on the right hand side is in the category of sets over all possible
associative algebra structures ·V on the vector space V .

By looking at formula (13) one can see that computing GH
2 (A, V ) is a very laborious

task in which the first major barrier is describing all associative multiplications on V .
The complexity of the computations involved increases along side with dim(V ). Among
all components of the coproduct in (13) the simplest one is that corresponding to the
trivial associative algebra structure on V , i.e. x ·V y := 0, for all x, y ∈ V . We shall
denote this trivial algebra structure on V by V0 := (V, ·V = 0) and we shall prove that
H

2
(

A, V0
)

is the coproduct of all classical second cohomological groups. Indeed, let

HS0(A, V0) be the set of all triples
(

⊳, ⊲, ϑ
)

such that
(

⊲, ⊳, ϑ, ·V := 0
)

∈ HS(A,V ).

Example 1.3 shows that a triple
(

⊳, ⊲, ϑ
)

∈ HS0(A, V0) if and only if (V, ⊲, ⊳) is an A-

bimodule and ϑ : A × A → V is a normalized 2-cocycle. Two triples
(

⊳, ⊲, ϑ
)

and
(

⊳′, ⊲′, ϑ′
)

∈ HS0(A, V0) are 0-cohomologous
(

⊳, ⊲, ϑ
)

≈0

(

⊳′, ⊲′, ϑ′
)

if and only if ⊳ = ⊳′,
⊲ = ⊲′ and there exists a linear map r : A→ V such that r(1A) = 0 and

ϑ(a, b) = ϑ′(a, b)− r(ab) + a ⊲ r(b) + r(a) ⊳ b (14)

for all a, b ∈ A – these are the conditions remaining from Definition 1.8 applied for the
trivial multiplication · := 0. The equalities ⊳ = ⊳′ and ⊲ = ⊲′ show that two different
A-bimodule structures over V give different equivalence classes in the classifying object
H

2
(

A, V0
)

. Thus, for computing it we can also fix (V, ⊳, ⊲) an A-bimodule structure

over V and consider the set Z2
(⊳, ⊲) (A, V0) of all normalized Hochschild 2-cocycles: i.e.

bilinear maps ϑ : A × A → V satisfying (H5) and the first condition of (H0). Two
normalized 2-cocycles ϑ and ϑ′ are cohomologous ϑ ≈0 ϑ

′ if and only if there exists a
linear map r : A→ V such that r(1A) = 0 and (14) holds. ≈0 is an equivalence relation
on the set Z2

(⊳, ⊲) (A, V0) and the quotient set Z2
(⊳, ⊲) (A, V0)/ ≈0 is just the classical

second Hochschild cohomological group which we denote by H2
(⊳, ⊲) (A, V0). All the above

considerations prove the following:

Corollary 1.12. Let A be an algebra and V a vector space viewed with the trivial asso-
ciative algebra structure V0. Then:

H
2
(

A, V0
)

= ⊔(⊳, ⊲)H
2
(⊳, ⊲) (A, V0) (15)

where the coproduct on the right hand side is in the category of sets over all possible
A-bimodule structures (⊳, ⊲) on the vector space V .

2. Co-flag algebras. Examples.

In this section we apply the theoretical results obtained in Section 1 for some concrete
examples: more precisely, for a given algebra A we shall classify all unital associative
algebras B such that there exists a surjective algebra map π : B → A having a 1-
dimensional kernel, which as a vector space will be assumed to be k. First, we shall
compute GH

2 (A, k): it will classify all these algebras up to an isomorphism which
stabilizes k and co-stabilizes A. Then, we will compute the second classifying object,
denoted by HOC (A, k), which will provide the classification of these algebras only up
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to an isomorphism. Computing both classifying objects is the key step in a recursive
algorithm for describing and classifying the new class of algebras defined as follows:

Definition 2.1. Let A be an algebra and E a vector space. A unital associative algebra
structure ·E on E is called a co-flag algebra over A if there exists a positive integer n
and a finite chain of surjective morphisms of algebras

An := (E, ·E) πn−→ An−1
πn−1−→ An−2 · · · π2−→ A1

π1−→ A0 := A (16)

such that dimk(Ker(πi)) = 1, for all i = 1, · · · , n. A finite dimensional algebra is called
a co-flag algebra if it is a co-flag algebra over the unital algebra k.

By applying successively Proposition 1.4 we obtain that a co-flag algebra over an algebra
A is isomorphic to an iteration of Hochschild products of the form

(

· · ·
(

(A⋆k)⋆k
)

⋆ · · ·⋆k
)

,
where the 1-dimensional vector space k appears n times in the above product. The tools
used for describing co-flag algebras are the following:

Definition 2.2. Let A be an algebra. A co-flag datum of the first kind of A is a triple
(λ,Λ, ϑ) consisting of two algebra maps1 λ, Λ : A→ k and a bilinear map ϑ : A×A→ k
satisfying the following compatibilities for any a, b, c ∈ A:

ϑ(a, 1A) = ϑ(1A, a) = 0, ϑ(a, bc) − ϑ(ab, c) = ϑ(a, b)Λ(c) − ϑ(b, c)λ(a) (17)

A co-flag datum of the second kind of A is a pair (λ, u) consisting of a linear map
λ : A→ k such that λ(1A) = 1 and a non-zero scalar u ∈ k∗.

We denote by CF1 (A) (resp. CF2 (A)) the set of all co-flag data of the first (resp. second)
kind of A and by CF (A) := CF1 (A) ⊔ CF2 (A) their coproduct; the elements of CF (A)
are called co-flag data of A. The set of co-flag data CF (A) parameterizes the set of all
Hochschild systems of A by a 1-dimensional vector space. The next result also describes
the first algebra A1 from the exact sequence (16) in terms depending only on A.

Proposition 2.3. Let A be an algebra. Then there exists a bijection HS (A, k) ∼= CF (A)
between the set of all Hochschild systems of A by k and the set of all co-flag data of A
given such that the Hochschild product A ⋆ k associated to (λ,Λ, ϑ) ∈ CF1 (A) is the
algebra denoted by A(λ,Λ,ϑ) with the multiplication given for any a, b ∈ A, x, y ∈ k by:

(a, x) ⋆ (b, y) =
(

ab, ϑ(a, b) + λ(a)y +Λ(b)x
)

(18)

while the Hochschild product A ⋆ k associated to (λ, u) ∈ CF2 (A) is the algebra denoted

by A(λ,u) with the multiplication given for any a, b ∈ A, x, y ∈ k by:

(a, x) ⋆ (b, y) =
(

ab, u−1
(

λ(a)λ(b) − λ(ab)
)

+λ(a)y + λ(b)x+ uxy
)

(19)

Proof. We have to compute the set of all bilinear maps ⊲ : A × k → k, ⊳ : k × A → k,
ϑ : A × A → k and · : k × k → k satisfying the compatibility conditions (H0)-(H8)
of Proposition 1.2. Since k has dimension 1 there exists a bijection between the set
of all Hochschild datums

(

⊲, ⊳, ϑ, ·
)

of A by k and the set of all 4-tuples (Λ, λ, ϑ, u)
consisting of two linear maps Λ, λ : A → k, a bilinear map ϑ : A× A → k and a scalar

1Recall that we assume the algebra maps λ : A → k to be unit preserving, i.e. λ(1A) = 1.
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u ∈ k. The bijection is given such that the Hochschild datum
(

⊲, ⊳, ϑ, ·
)

corresponding
to (Λ, λ, ϑ, u) is defined as follows:

a ⊲ x := λ(a)x, x ⊳ a := Λ(a)x, x · y := uxy

for all a ∈ A and x, y ∈ k. Now, axiom (H0) holds if and only if ϑ(a, 1A) = ϑ(1A, a) = 0
and λ(1A) = Λ(1A) = 1. Axioms (H1), (H3), (H4) and (H8) are trivially fulfilled.
Axiom (H5) is equivalent to ϑ(a, bc)− ϑ(ab, c) = ϑ(a, b)Λ(c)− ϑ(b, c)λ(a), axiom (H6) is
equivalent to

λ(ab) = λ(a)λ(b)− uϑ(a, b) (20)

while axiom (H7) is equivalent to Λ(ab) = Λ(a)Λ(b) − uϑ(a, b). Finally, axiom (H2) is
equivalent to uΛ(a) = uλ(a), for all a ∈ A. A discussion on u is imposed by the last
compatibility condition and the conclusion follows easily: CF1 (A) corresponds to the
case when u = 0 and this will give rise to the algebras A⋆k = A(λ,Λ,θ). The case CF2 (A)
corresponds to u 6= 0; in this case Λ = λ and the cocycle ϑ is implemented by u and λ
via the formula ϑ(a, b) := u−1

(

λ(a)λ(b) − λ(ab)
)

, for all a, b ∈ A, that arises from (20).
Moreover, we can easily check that axiom (17) is trivially fulfilled for ϑ defined as above.

The algebra A(λ,u) is just the Hochschild product A ⋆ k associated to this context. �

Remarks 2.4. (1) The first family of Hochschild products A(λ,Λ,θ) constructed in Propo-
sition 2.3 corresponds to the classical case in which k ∼= 0× k is a two-sided ideal of null
square in the algebra A(λ,Λ,θ). The algebras A(λ,Λ,θ) will be classified up to an isomor-

phism in Theorem 2.8 below. For the new families of algebras A(λ,u) the kernel of the
canonical projection πA : A(λ,u) → k is equal to k ∼= 0 × k and this is not a null square
ideal since (0, 1) ⋆ (0, 1) = (0, u) 6= (0, 0). Let (λ, u) ∈ CF2 (A) be a co-flag datum of the

second kind of A. Taking into account the multiplication on A(λ, u) given by (19) we can
easily prove that the map:

ϕ : A(λ, u) → A× k, ϕ(a, x) := (a, λ(a) + ux) (21)

for all a ∈ A and x ∈ k is an isomorphism of algebras (which does not stabilize k, if
u 6= 1), where A× k is the usual direct product of algebras. The inverse of ϕ is given by
ϕ−1(a, x) =

(

a, u−1(x− λ(a)
)

, for all a ∈ A and x ∈ k.

We will now describe the algebra A(λ,Λ,ϑ) and A(λ,u) by generators and relations. The
elements of A will be seen as elements in A× k via the identification a = (a, 0) and we
denote by f := (0A, 1) ∈ A × k. Let {ei | i ∈ I} be a basis of A as a vector space over
k. Then the algebra A(λ,Λ,ϑ) is the vector space having {f, ei | i ∈ I} as a basis and the
multiplication ⋆ given for any i ∈ I by:

ei ⋆ ej = ei ·A ej + ϑ(ei, ej) f, f
2 = 0, ei ⋆ f = λ(ei) f, f ⋆ ei = Λ(ei) f (22)

where ·A denotes the multiplication on A. The algebra A(λ,u) is the vector space having
{f, ei | i ∈ I} as a basis and the multiplication ⋆ given for any i ∈ I by:

ei⋆ej = ei ·Aej+u−1
(

λ(ei)λ(ej)−λ(ei ·A ej)
)

f, f2 = u f, ei⋆f = f ⋆ei = λ(ei) f (23)

Using Proposition 2.3, Proposition 1.4 and the isomorphism A(λ, u) ≃ A× k we obtain:
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Corollary 2.5. Let A be an algebra. A unital associative algebra B has a surjective
algebra map B → A → 0 whose kernel is 1-dimensional if and only if B is isomorphic
to A× k or A(λ,Λ,ϑ), for some (λ,Λ, ϑ) ∈ CF1 (A).

We are now able to compute the classifying object GH
2 (A, k).

Proposition 2.6. Let A be an algebra. Then,

GH
2 (A, k) ∼=

(

CF1 (A)/ ≈1

)

⊔ k∗

where ≈1 is the following equivalence relation on CF1 (A): (λ,Λ, ϑ) ≈1 (λ
′,Λ′, ϑ′) if and

only if λ = λ′, Λ = Λ′ and there exists a linear map t : A→ k such that for any a, b ∈ A:

ϑ(a, b) = ϑ′(a, b) − t(ab) + λ′(a)t(b) + Λ′(b)t(a) (24)

Proof. It follows from Theorem 1.9 and Proposition 2.3 that

GH
2 (A, k) ∼=

(

CF1 (A)/ ≈1

)

⊔
(

CF2 (A)/ ≈2

)

where the equivalence relation ≈i on CFi (A), for i = 1, 2, is just the equivalence relation
≈ from Definition 1.8 written for the sets CFi (A) via the bijection HS (A, k) ∼= CF (A)
given in Proposition 2.3. The equivalence relation ≈ written on the set of all co-flag
data of the first kind takes precisely the form from the statement – we mention that a
linear map t satisfying (24) has the property that t(1A) = 0. The equivalence relation ≈
written on CF2 (A) takes the following form: (λ, u) ≈2 (λ′, u′) if and only if u = u′ and
there exists a linear map t : A→ k such that for any a ∈ A we have:

λ(a) = λ′(a) + t(a)u′ (25)

Now, if we fix a unit preserving linear map λ0 : A→ k we obtain that the set {(λ0, u) |u ∈
k∗} is a system of representatives for the equivalence relation ≈2 on CF2 (A) and hence
CF2 (A)/ ≈2

∼= k∗, which finishes the proof. �

The way ≈1 is defined in Proposition 2.6 indicates the decomposition of
(

CF1 (A)/ ≈1

)

as follows: for two fixed algebra maps (λ, Λ) ∈ Alg(A, k) we shall denote by Z2
(λ,Λ) (A, k)

the set of all normalized (λ, Λ)-cocycles; that is, the set of all bilinear maps ϑ : A×A→ k
satisfying the following compatibilities for any a, b, c ∈ A:

ϑ(a, 1A) = ϑ(1A, a) = 0, ϑ(a, bc) − ϑ(ab, c) = ϑ(a, b)Λ(c) − ϑ(b, c)λ(a)

Two (λ, Λ)-cocycles ϑ, ϑ′ : A × A → k are equivalent ϑ ≈(λ,Λ)
1 ϑ′ if and only if there

exists a linear map t : A→ k such that

ϑ(a, b) = ϑ′(a, b)− t(ab) + λ(a)t(b) + Λ(b)t(a) (26)

for all a, b ∈ A. If we denote H2
(λ,Λ) (A, k) := Z2

(λ,Λ) (A, k)/ ≈(λ,Λ)
1 we obtain the

following decomposition of GH
2 (A, k):
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Corollary 2.7. Let A be an algebra. Then,

GH
2 (A, k) ∼=

(

⊔(λ,Λ) H
2
(λ,Λ) (A, k)

)

⊔ k∗ (27)

where the coproduct on the right hand side is in the category of sets over all possible
algebra maps λ, Λ : A→ k.

The classifying object GH
2 (A, k) computed in Corollary 2.7 classifies all Hochschild

products A ⋆ k up to an isomorphism of algebras which stabilizes k and co-stabilizes A.
In what follows we will consider a less restrictive classification: we denote by HOC (A, k)
the set of algebra isomorphism classes of all Hochschild productsA⋆k. Two cohomologous
Hochschild products A⋆ k and A ⋆′ k are of course isomorphic and therefore there exists
a canonical projection GH

2 (A, k) ։ HOC (A, k) between the two classifying objects.
Next we compute HOC (A, k).

Theorem 2.8. Let A be an algebra. Then there exists a bijection:

HOC (A, k) ∼=
(

CF1 (A)/ ≡
)

⊔{A× k } (28)

where ≡ is the equivalence relation on CF1 (A) defined by: (λ,Λ, ϑ) ≡ (λ′,Λ′, ϑ′) if and
only if there exists a triple (s0, ψ, r) ∈ k∗ × AutAlg(A) × Homk(A, k) consisting of a
non-zero scalar s0 ∈ k∗, an algebra automorphism ψ of A and a linear map r : A → k
such that for any a, b ∈ A we have:

λ = λ′ ◦ ψ, Λ = Λ′ ◦ ψ (29)

ϑ(a, b) s0 = ϑ′
(

ψ(a), ψ(b)
)

+λ(a)r(b) + Λ(b)r(a)− r(ab) (30)

Proof. Corollary 2.5 shows that any Hochschild productA⋆k is isomorphic to A(λ,Λ,ϑ), for

some (λ,Λ, ϑ) ∈ CF1 (A) or to A
(λ′,u′), for some (λ′, u′) ∈ CF2 (A). Since A

(λ′,u′) ∼= A×k,
the proof relies on the following two steps:

(1) Let (λ,Λ, ϑ) and (λ′,Λ′, ϑ′) ∈ CF1 (A). Then, there exists a bijection between the set
of all algebra isomorphisms ϕ : A(λ,Λ,ϑ) → A(λ′,Λ′,ϑ′) and the set of all triples (s0, ψ, r) ∈
k∗×AutAlg(A)×Homk(A, k) satisfying the compatibility conditions (29) and (30). The
bijection is given such that the algebra isomorphism ϕ = ϕ(s0, ψ, r) associated to (s0, ψ, r)
is defined for any a ∈ A and x ∈ k by:

ϕ(s0, ψ, r)(a, x) =
(

ψ(a), r(a) + xs0
)

(31)

(2) The algebras A(λ,Λ,ϑ) and A
(λ′,u′) ∼= A× k are not isomorphic.

We start by proving (1); although this is more than we need for proving our theorem,
this more general statement will be used later on in computing the automorphism groups
for the algebras A(λ,Λ,ϑ). First we note that there exists a bijection between the set of
all linear maps ϕ : A × k → A × k and the set of quadruples (s0, β0, ψ, r) ∈ k × A ×
Homk(A, A)×Homk(A, k) given such that the linear map ϕ = ϕ(s0, β0, ψ, r) associated to
(s0, β0, ψ, r) is given for any a ∈ A and x ∈ k by:

ϕ(a, x) =
(

ψ(a) + xβ0, r(a) + x s0
)

(32)
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We will prove now the following technical fact: a linear map given by (32) is an iso-
morphism of algebras from A(λ,Λ,ϑ) to A(λ′,Λ′,ϑ′) if and only if β0 = 0, s0 6= 0, ψ is an
algebra automorphism of A and (29)-(30) hold. Taking into account the multiplication
on A(λ,Λ,ϑ) given by (18), we can easily obtain that ϕ

(

(0, x) ⋆ (0, y)
)

= ϕ(0, x) ⋆′ ϕ(0, x)
if and only if β0 = 0, where by ⋆′ we denote the multiplication of A(λ′,Λ′,ϑ′). Hence, in
order for ϕ to be an algebra map it should take the following simplified form for any
a ∈ A and x ∈ k:

ϕ(a, x) =
(

ψ(a), r(a) + x s0
)

(33)

for some triple (s0, ψ, r) ∈ k×Homk(A, A)×Homk(A, k). Next we prove that a linear
map given by (33) is an algebra morphism from A(λ,Λ,ϑ) to A(λ′,Λ′,ϑ′) if and only if
ψ : A → A is an algebra map and the following compatibilities are fulfilled for any a,
b ∈ A:

λ(a) s0 = λ′
(

ψ(a)
)

s0, Λ(a) s0 = Λ′
(

ψ(a)
)

s0 (34)

r(ab) + ϑ(a, b) s0 = ϑ′
(

ψ(a), ψ(b)
)

+λ′(ψ(a))r(b) + Λ′(ψ(b))r(a) (35)

Indeed, ϕ preserves the unit (1A, 0) if and only if ψ(1A) = 1A and r(1A) = 0. On the other
hand we can prove that the first (resp. the second) compatibility of (34) is exactly the
condition ϕ

(

(a, 0) ⋆ (0, x)
)

= ϕ(a, 0) ⋆′ ϕ(0, x) (resp. ϕ
(

(0, x) ⋆ (a, 0)
)

= ϕ(0, x) ⋆′ ϕ(a, 0)).

Finally, the condition ϕ
(

(a, 0) ⋆ (b, 0)
)

= ϕ(a, 0) ⋆′ ϕ(b, 0) is equivalent to the fact that
ψ is an algebra endomorphism of A and (35) holds. Finally, the condition r(1A) = 0
follows by taking a = b = 1A in (35). Step (1) is finished if we prove that an algebra map
ϕ = ϕ(s0, ψ, r) given by (33) is bijective if and only if s0 6= 0 and ψ is an automorphism

of A. Assume first that s0 6= 0 and ψ is bijective with the inverse ψ−1. Then, we can
see that ϕ(s0, ψ, r) is an isomorphism of algebras with the inverse given by ϕ−1

(s0, ψ, r)
:=

ϕ(s−1
0 , ψ−1,−(r◦ψ−1)s−1

0 ). Conversely, assume that ϕ is bijective. Then its inverse ϕ−1 is

an algebra map and thus has the form ϕ−1(a, x) = (ψ′(a), r′(a) + xs′0), for some triple
(s′0, r

′, ψ′). If we write ϕ−1 ◦ϕ(0, 1) = (0, 1) we obtain that s0s
′
0 = 1 i.e. s0 is invertible

in k. In the same way ϕ−1 ◦ ϕ(a, 0) = (a, 0) = ϕ ◦ ϕ−1(a, 0) gives that ψ is bijective
and ψ′ = ψ−1.

We will prove now the assertion from step (2). Assume that ϕ : A(λ,Λ,ϑ) → A(λ′,u′) is an
algebra map. Thus, ϕ is given by (32), for some quadruple (s0, β0, ψ, r). Now, we can
see that the algebra map condition ϕ

(

(0, x) ⋆ (0, y)
)

= ϕ(0, x) ⋆′ ϕ(0, y) holds if and only

if β0 = 0 and s0 = 0, where ⋆′ denotes the multiplication on the algebra A(λ′,u′). Hence,
ϕ takes the form ϕ(a, x) =

(

ψ(a), r(a)
)

, for all a ∈ A and x ∈ k. Such a map is never an
isomorphism of algebras since is not injective and thus two algebras of the form A(λ,Λ,ϑ)

and A(λ′,u′) are never isomorphic. The theorem is now completely proved. �

Remark 2.9. The compatibility condition (30) of Theorem 2.8 highlights the difficulty of
classifying co-flag algebras over a given algebra A: it generalizes the classical Kroneker-
Williamson equivalence of bilinear forms whose classification was started in [39] and
finished in [27] over algebraically closed fields. We recall that two bilinear forms ϑ
and ϑ′ on a vector space A are called isometric if there exists a linear automorphism
ψ ∈ Autk(A) such that ϑ(x, y) = ϑ′(ψ(x), ψ(y)), for all x, y ∈ A. If the cocycles ϑ and
ϑ′ are isometric as bilinear forms on A and ψ is an algebra automorphism of A, then
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(30) holds by taking s0 := 1 and r := 0, the trivial map. For future references to the
problem of classifying bilinear forms up to an isometry we refer to [27].

Theorem 2.8 can be applied to classify all semidirect products of algebras of the form
A#k. We recall from Example 1.3 that a semidirect product A#k is just a Hochschild
product A(λ,Λ,ϑ) = A ⋆ k having a trivial cocycle. The algebra obtained in this way will
be denoted by A(λ,Λ). Directly from the proof of Theorem 2.8 we obtain:

Corollary 2.10. Let A be an algebra, (λ, Λ) and (λ′, Λ′) two pairs consisting of algebra
maps from A to k. Then there exists an isomorphism of algebras A(λ,Λ)

∼= A(λ′,Λ′) if
and only if there exists ψ ∈ AutAlg(A) such that λ = λ′ ◦ ψ and Λ = Λ′ ◦ ψ.

An interesting special case occurs for the algebras A such that there is no algebra map
A→ k (e.g. the classical Weyl algebra W1(k) = k < x, y |xy − yx = 1 > or the matrix
algebra Mn(k), for n ≥ 2). Using Proposition 2.6 and Theorem 2.8 we obtain:

Corollary 2.11. Let A be an algebra for which there is no algebra map A→ k. Then

GH
2 (A, k) ∼= k∗, HOC (A, k) = {A× k }

In particular, up to an isomorphism, the only algebra B for which there exists a surjective
algebra map B → A having a 1-dimensional kernel is the direct product A× k.

Determining the automorphism group of a given algebra is an old and very difficult
problem, intensively studied in invariant theory (see [13] and their references). As already
mentioned, the first step proved in the proof of Theorem 2.8 allows us to compute the
automorphism group AutAlg (A(λ,Λ,ϑ)), for any (λ,Λ, ϑ) ∈ CF1 (A). Let k∗ be the units
group of k, k∗ × AutAlg(A) the direct product of groups and (A∗,+) the underlying
abelian group of the linear dual A∗ = Homk(A, k). Then the map given for any s0 ∈ k∗,
ψ ∈ AutAlg(A) and r ∈ A∗ by:

ζ : k∗ ×AutAlg(A) → AutGr (A
∗,+), ζ(s0, ψ) (r) := s−1

0 r ◦ ψ
is a morphism of groups. Thus, we can construct the semidirect product of groups
A∗

⋉ζ

(

k∗ ×AutAlg(A)
)

associated to ζ. The next result shows that AutAlg(A(λ,Λ,ϑ)) is

isomorphic to a certain subgroup of the semidirect product A∗
⋉ζ

(

k∗ ×AutAlg(A)
)

.

Corollary 2.12. Let A be an algebra, (λ,Λ, ϑ) ∈ CF1 (A) a co-flag datum of the first
kind of A and let G

(

A, (λ,Λ, ϑ)
)

be the set of all triples (s0, ψ, r) ∈ k∗×AutAlg(A)×A∗

such that for any a, b ∈ A:

λ = λ ◦ ψ, Λ = Λ ◦ ψ, ϑ(a, b) s0 = ϑ
(

ψ(a), ψ(b)
)

+λ(a)r(b) + Λ(b)r(a) − r(ab)

Then, there exists an isomorphism of groups AutAlg(A(λ,Λ,ϑ)) ∼= G
(

A, (λ,Λ, ϑ)
)

, where

G
(

A, (λ,Λ, ϑ)
)

is a group with respect to the following multiplication:

(s0, ψ, r) · (s′0, ψ′, r′) := (s0s
′
0, ψ ◦ ψ′, r ◦ ψ′ + s0r

′) (36)

for all (s0, ψ, r), (s
′
0, ψ

′, r′) ∈∈ G
(

A, (λ,Λ, ϑ)
)

. Moreover, the canonical map

G
(

A, (λ,Λ, ϑ)
)

−→ A∗
⋉ζ

(

k∗ ×AutAlg(A)
)

, (s0, ψ, r) 7→
(

s−1
0 r, (s0, ψ)

)

in an injective morphism of groups.
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Proof. The fact that G
(

A, (λ,Λ, ϑ)
)

is a group with respect to the multiplication (36)
follows by a straightforward computation which is left to the reader: the unit is (1, IdA, 0)
and the inverse of (s0, ψ, r) is (s−1

0 , ψ−1, −s−1
0 (r ◦ ψ−1)). The first statement follows

from the proof of Theorem 2.8, step (1), since ϕ(s0,ψ,r) ◦ϕ(s′0,ψ
′,r′) = ϕ(s0s′0, ψ◦ψ

′, r◦ψ′+s0r′),

where ϕ(s0,ψ,r) is an automorphism of A(λ,Λ,ϑ) given by (31). The last assertion follows
by a routine computation. �

Now we shall provide some explicit examples. The first example shows the limitations
of the classical approach for the extension problem: there is no (1 + n2)-dimensional
algebra with an algebra projection on the matrix algebra Mn(k) whose kernel is a null
square ideal, but there exists a family of (1 + n2)-dimensional algebras which project
on the matrix algebra Mn(k). We denote by {eij | i, j = 1, · · · , n} the canonical basis of

Mn(k), i.e. eij is the matrix having 1 in the (i, j)th position and zeros elsewhere while

δkj and δ
(i,j)
(n,n) denote the Kroneker symbols.

Example 2.13. Let n ≥ 2 be a positive integer. Then, GH
2 (Mn(k), k) ∼= k∗ and the

equivalence classes of all (1 + n2)-dimensional algebras with an algebra projection on
Mn(k) are the following algebras denoted by Mn(k)

u and defined for any u ∈ k∗ as the
vector space having {f, eij | i, j = 1, · · · , n} as a basis and the multiplication given for
any i, j = 1, · · · , n by:

f2 := u f, eij ⋆ f = f ⋆ eij := δ
(i,j)
(n,n) f, eij ⋆ ekl := δjk eil + u−1

(

δ
(i,j)
(n,n)δ

(k,l)
(n,n) − δkj δ

(i,l)
(n,n)

)

f

Furthermore, HOC (Mn(k), k) = {Mn(k)× k}.
The result follows by applying Proposition 2.6 and Corollary 2.11 since there is no unitary

algebra map Mn(k) → k. If we consider λ0 : Mn(k) → k defined by λ0(eij) := δ
(i,j)
(n,n),

for all i, j = 1, · · · , n, then {(λ0, u) |u ∈ k∗} is a system of representatives for the
equivalence relation ≈2. The algebra Mn(k)

u associated to the pair (λ0, u) is the vector
space having {f, eij | i, j = 1, · · · , n} as a basis while the multiplication given by (23)
comes down to the one in the statement.

An interesting example through the subtle arithmetics involved in the classification of
the corresponding Hochschild products is the group algebra k[Cn], where for a positive
integer n ≥ 2 we denote by Cn the cyclic group of order n generated by d. We introduce
the following notation: for any i, j = 1, · · · , n − 1 we shall denote by i ∗ j the positive
integer given by

i ∗ j :=
{

i+ j if j + i < n
i+ j − n if j + i ≥ n

In what follows Un(k) := {ω ∈ k | ωn = 1} denotes the cyclic group of n-th roots
of unity in k and A(n, k) := {x ∈ U(k[Cn]) | ψ : k[Cn] → k[Cn], ψ(d

i) = xi, i =
0, 1, · · · , n− 1, is an algebra automorphism}.
Example 2.14. Let k be a field such that n is invertible in k. Then:

GH
2 (k[Cn], k) ∼=

(

Un(k) × Un(k)
)

⊔ k∗
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and the equivalence classes of (n + 1)-dimensional algebras with an algebra projection
on k[Cn] are the families of algebras having {f, di | i = 1, · · · , n} as a basis over k and
the multiplication ⋆ defined for any (α, β) ∈ Un(k) × Un(k), u ∈ k∗ and i, j = 1, · · · , n
by:

k[Cn](α, β) : di ⋆ dj = di+j, f2 = 0, di ⋆ f = αi f, f ⋆ di = βi f

k[Cn]
u : di ⋆ dj = di+j + u−1(δni δ

n
j − δni+j)f, f2 = uf, di ⋆ f = f ⋆ di = δni f

Furthermore, there exists a bijection

HOC (k[Cn], k) ∼=
(

Un(k)× Un(k)/ ≡
)

⊔{k[Cn]× k}
where ≡ is the following equivalence relation on Un(k)×Un(k): two pairs (α, β), (α′, β′)
of n-th roots of unity in k are equivalent (α, β) ≡ (α′, β′) if and only if there exists
x0 + x1 d+ · · · + xn−1 d

n−1 ∈ A(n, k) such that

α′ = x0 + x1 α+ · · ·+ xn−1 α
n−1, β′ = x0 + x1 β + · · ·+ xn−1 β

n−1 (37)

To start with we point out that the algebra maps k[Cn] → k are parameterized by the
cyclic group of n-th roots of unity in k. Consider α, β ∈ Un(k) which implement λ and
respectively Λ, i.e. λ(d) = α and Λ(d) = β. We are left to compute the set of all (λ, Λ)-
cocycles. To this end we denote ϑ(di, d) := ξi, i = 1, · · · , n − 1 and we will see that
these elements will allow us to completely determine the cocycle ϑ : k[Cn]× k[Cn] → k.
Indeed, by writing down (17) for triples of the form (di, dj , d) and using induction we
obtain the following general formula:

ϑ(di, dj) =

j−1
∑

k=0

ξi∗k β
j−1−k −

(

j−1
∑

l=1

ξl β
j−1−l

)

αi

for all i, j = 1, · · · , n − 1, where ξ0 := 0. Furthermore, by writing down (17) for triples
of the form (di, dn−i, di) and using the above formula for ϑ we obtain the following
compatibility which needs to be fulfilled for any i = 1, · · · , n− 1:

(αi − βi)(ξn−1 + ξn−2 β + ...+ ξ1 β
n−2) = 0

Therefore we distinguish two cases, namely: α = β or α 6= β and ξn−1 + ξn−2 β + ... +
ξ1 β

n−2 = 0. It follows that CF1 (k[Cn]) ∼= (Un(k) × kn−1) ∪ {(α, β, ξ1, ξ2, ..., ξn−2) ∈
Un(k)×Un(k)× kn−2 | α 6= β} and the bijection associates to any (α, δ1, δ2, ..., δn−1) ∈
Un(k)×kn−1 the co-flag datum of the first kind (λα, Λα, ϑδ) given for all i, j = 1, · · · , n−1
by:

λ(d) = Λ(d) := α, ϑδ(d
i, dj) :=

j−1
∑

k=0

δi∗k α
j−1−k −

(

j−1
∑

l=1

δl α
i+j−1−l

)

where δ0 = 0, and to any (β, γ, ξ1, ξ2, ..., ξn−2) ∈ Un(k) × Un(k) × kn−2, with β 6= γ,
associates the co-flag datum of the first kind (λβ, Λγ , ϑξ) given for any i, j = 1, · · · , n−1
by:

λβ(d) := β, Λγ(d) := γ, ϑξ(d
i, dj) :=

j−1
∑

k=0

ξi∗k γ
j−1−k −

(

j−1
∑

l=1

ξl γ
j−1−l

)

βi
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where ξ0 = 0 and ξn−1 = −
(

ξn−2 β + ... + ξ1 β
n−2

)

. It is now obvious that a (λα, Λα)-

cocycle is never equivalent to a (λβ, Λγ)-cocycle for any α, β, γ ∈ Un(k), β 6= γ. Fur-
thermore, by a rather long but straightforward computation it can be easily seen that
for all α ∈ Un(k), any (λα, Λα)-cocycle, say ϑδ, is equivalent (in the sense of (26)) to
the trivial cocycle via the linear map t : k[Cn] → k defined by t(1) := 0 and for any
i = 2, · · · , n− 1:

t(d) := n−1
n−1
∑

j=1

αjδn−j , t(di) := n−1iαi−1
n−1
∑

j=1

αjδn−j −
i−2
∑

j=0

αjδi−1−j

Therefore we have ⊔(λα,Λα) H
2
(λα,Λα)

(k[Cn], k) ∼= {(α, α) | α ∈ Un(k)}. A similar state-

ment holds for the second family of co-flag data of the first kind: for all β, γ ∈ Un(k),
with β 6= γ, any (λβ, Λγ)-cocycle, say ϑξ, is equivalent to the trivial cocycle via the linear

map t : k[Cn] → k defined by t(1) := t(d) := 0 and t(di) := −∑i−2
j=0 ξi−1−j γ

j , for all

i = 2, · · · , n− 1. Thus ⊔(λβ ,Λγ)
H2

(λβ ,Λγ)
(k[Cn], k) ∼= {(α, β) ∈ Un(k)× Un(k) | α 6= β}.

Therefore, we have proved that
(

CF1 (k[Cn])/ ≈1

)

∼= Un(k)×Un(k) and the correspond-

ing co-flag algebras are those denoted by k[Cn](α, β). For the co-flag data of the second

kind of k[Cn] we choose the set of representatives {(λ0, u) | u ∈ k∗} for the equivalence
relation ≈2, where λ

0 : k[Cn] → k is given by λ0(di) = δni , for all i = 1, · · · , n. They
give rise to the co-flag algebras denoted by k[Cn]

u. The conclusion now follows from
Corollary 2.7. Finally, the assertion regarding HOC (k[Cn], k) is an easy consequence of
Corollary 2.10.

Remark 2.15. Example 2.14 shows that any Hochschild product k[Cn]⋆k is isomorphic
either to the direct product k[Cn] × k, or to a semi-direct product k[Cn](α, β), parame-
terized by the group Un(k)×Un(k). The explicit description of the isomorphism classes
of the algebras k[Cn](α, β) indicated by the equivalence relation (37) is a difficult number
theory problem which relies heavily on the arithmetics of the positive integer n as well
as on the base field k. Furthermore, the problem is also related to other two intensively
studied problems in the theory of group algebras, namely the description of all invertible
elements and the automorphism group of a group algebra [23, 32, 34]. Indeed, the key
set A(n, k) which appears in the description of the classifying object HOC (k[Cn], k)
parameterizes in fact the automorphism group AutAlg(k[Cn]). Any element of A(n, k)
is invertible in k[Cn] and has order n in the group U(k[Cn]). These elements depend es-
sentially on n and the base field k. Indeed, let Xn−1 = f1f2 · · · ft be the decomposition
of Xn − 1 as a product of irreducible polynomials in k[X]. If we denote by εi a root of
fi in a fixed algebraic closure of k, we obtain that there exists a canonical isomorphism
of k-algebras k[Cn] ∼= k(ε1)× · · · × k(εt) that maps the generator d of Cn to (ε1, · · · , εt).
Thus, AutAlg(k[Cn]) is isomorphic to a direct product between all wreath product of

Aut
(

k(εi)
)

and the symmetric groups [34].

Applying Example 2.14 for n = 2, we obtain the classification of all 3-dimensional
algebras with an algebra projection on k[C2] ∼= k × k.
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Example 2.16. If k a field of characteristic 6= 2, then:

GH
2 (k[C2], k) ∼=

(

{±1} × {±1}
)

⊔ k∗ (38)

HOC (k[C2], k) ∼= {k3, k[X,Y ]/(X2 − 1, Y 2, XY − Y ), A21} (39)

where A21 is the 3-dimensional non-commutative algebra having {1, d, f} as a basis and
the multiplication given by d2 = 1, f2 = 0, df = −fd = f .

Now we highlight the efficiency of our methods in order to classify co-flag algebras of a
given dimension. If k is a field of characteristic 6= 2, then, up to an isomorphism, there
exists only two co-flag algebras of dimension 2: the algebras k[X]/(X2) and k[C2] ∼= k×k
[5, Corollary 4.5]. If k 6= k2, we mention that the other family of 2-dimensional algebras,

namely the quadratic field extension k(
√
d), for some d ∈ k \ k2 does not contain co-flag

algebras since there is no algebra map k(
√
d) → k. The co-flag algebras over k[C2] are

classified by (39) and thus, in order to classify all 3-dimensional co-flag algebras we need
to classify the co-flag algebras over k[X]/(X2).

Example 2.17. Let A := k[X]/(X2). ThenGH
2 (k[X]/(X2), k) ∼= k ⊔ k∗ and the equiv-

alence classes of 3-dimensional algebras that have an algebra projection on k[X]/(X2)
are two families of algebras defined for any a ∈ k and u ∈ k∗ as follows:

Aa := k[X, Y ]/(X2 − aY, Y 2, XY ), Au := k[X, Y ]/(X2, Y 2 − uY, XY )

Furthermore, HOC (k[X]/(X2), k) = {A0, A1, A
1}, i.e. up to an isomorphism there

exist three co-flag algebras of dimension 3 over k[X]/(X2).

Indeed, A is the 2-dimensional algebra having 1 and x as a basis and x2 = 0. Thus A
has only one algebra map A → k, namely the one sending x to 0. Hence, there exists a
bijection CF1 (A) ∼= k such that the co-flag datum of the first kind (λ,Λ, ϑ) associated
to a ∈ k is given by

ϑ(x, x) := a, λ(x) = Λ(x) = ϑ(1, x) = ϑ(x, 1) = ϑ(1, 1) := 0

We can easily see that the equivalence relation ≈1 of Proposition 2.6 becomes equality,
i.e. a ≈1 a

′ if and only if a = a′ and hence CF1 (A)/ ≈1
∼= k. The families of algebras as-

sociated to such a co-flag datum of the first kind as defined by (22) are the 3-dimensional
algebras having {f, 1, x} as a basis and the multiplication given by: x ⋆ x = af ,
f2 = x⋆f = f ⋆x = 0, which is the algebra Aa. For the last part we apply Proposition 2.6
which proves that CF2 (A)/ ≈2

∼= k∗: the algebra Au, for all u ∈ k∗, is precisely the alge-
bra defined by (23) associated to the co-flag datum of the second king (λ0, u), where λ0

is the linear map given by λ0(x) := 0, λ0(1) := 1. The last statement follows from The-
orem 2.8 or it can be proved directly as follows: we observe that, for any u ∈ k∗, there
exists and isomorphism of algebras Au ∼= A1 = k[X, Y ]/(X2, Y 2−Y, XY ). On the other
hand, there exists an isomorphism of algebras Aa ∼= A1 = k[X, Y ]/(X2 − Y, Y 2, XY ),
for all a ∈ k∗ and any two algebras A0, A1 and A1 are not isomorphic to each other.

To conclude, using Example 2.16 and Example 2.17 we obtain:
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Corollary 2.18. If k is a field of characteristic 6= 2 then, up to an isomorphism, there
exist exactly six 3-dimensional co-flag algebras namely:

k3, k[X,Y ]/(X2 − 1, Y 2,XY − Y ), k < x, y |x2 = 1, y2 = 0, xy = −yx = y >

k[X, Y ]/(X2, Y 2, XY ), k[X, Y ]/(X2 − Y, Y 2, XY ), k[X, Y ]/(X2, Y 2 − Y, XY )

In particular, if k := C the field of complex numbers, Corollary 2.18 shows that only
6 out of the 22 types of algebras of dimension 3 are co-flag algebras. Moreover, we
also highlight the efficiency of Theorem 2.8 in classifying co-flag algebras by turning the
problem into a purely computational one using a recursive method: if we consider A to
be each of the algebras from Corollary 2.18 and using the results of this section we will
arrive at the classification of 4-dimensional co-flag algebras. Of course the difficulty of
the computations increases along side with the dimension.

Very interesting and completely different from Mn(k) is the case when A := Tn(k) is
the algebra of upper triangular matrices, i.e. Tn(k) is the subalgebra of Mn(k) having
B := {eij | i, j = 1, 2, · · · , n, i ≤ j} as the canonical basis over k. In order to write down
the classifying object GH

2 (Tn(k), k) we introduce the following three sets of matrices of
trace zero, defined for any u, v, w = 1, 2, · · · , n by:

Mu := {A = (aij) ∈ Mn(k) | aii = 0, for all i = 1, · · · , n and aur = 0, for all u < r}

Mv,w := {A = (aij) ∈ Mn(k) |
n
∑

i=1

aii = 0, avv = 0, and aws = 0, for all w ≤ s}

M
v,w

:= {A = (aij) ∈ Mn(k) |
n
∑

i=1

aii = 0, avv = 0, and aws = 0, for all w ≤ s 6= v}

Example 2.19. Let k be a field of characteristic zero. Then:

GH
2 (Tn(k), k) ∼=

(

⋃

u∈{1,2,··· ,n}

Mu
)

⊔
(

⋃

v,w∈{1,2,··· ,n}, v<w

Mv,w × kn−w
)

⊔U ⊔ k∗

where we denote: U :=
⋃

v,w∈{1,2,··· ,n}, v>w M
v,w × kn−w × kv−w−1. The equivalence

classes of
(n(n+1)

2 +1
)

-dimensional algebras that have an algebra projection on Tn(k) are
the families of algebras having {f, eij | i, j = 1, 2, · · · , n, i ≤ j} as a basis over k and
the multiplication given below (we only write down the non-zero products):

Tn(k)uA : eit ⋆ ets = eil − αisf, euj ⋆ ejl = eul, euu ⋆ ekl = αklf, eij ⋆ euu = αijf,

eij ⋆ ejj = eij − αijf, eiu ⋆ euu = eiu, euu ⋆ f = f ⋆ euu = f,

whereu ∈ {1, 2, · · · , n}, A = (αpq)p,q=1,n ∈Mu, i, j 6= u, t 6= s;

Tn(k)v,wB,Γ : eip ⋆ epl = eil − βilf, ewi ⋆ eil = ewl − βlf, eww ⋆ ekl = ewlδ
w
k + βklf,

eit ⋆ evv = βitf, eij ⋆ ejj = eij − βij(1− δvj )f, ews ⋆ evv = −γsf,
ewj ⋆ ejj = ewj + γj(1− δwj )f, evv ⋆ f = eww ⋆ f = f,

where v,w ∈ {1, 2, · · · , n}, v < w, B = (βpq)p,q=1,n ∈Mv,w,

Γ = (γr)w<r, i 6= w, p 6= l, i 6= l, t 6= v, s /∈ {v,w};
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Tn(k)w,vC,Ψ,Ω : eip ⋆ epl = eil − δilf, ewi ⋆ eij = ewj + ψjf, ewt ⋆ etv = ewv + ωtf,

eww ⋆ ekl = ewlδ
w
k + δklf, eij ⋆ ejj = eij − δijf, ewj ⋆ evv = −ψjf

eiv ⋆ evv = eiv, evv ⋆ f = f ⋆ eww = f, where v,w ∈ {1, 2, · · · , n},
v > w, C = (δpq)p,q=1,n ∈M

v,w
, Ψ = (ψr)w<r, Ω = (ωs)w<s<v,

i 6= w, j 6= v, p 6= l, t /∈ {v,w};
λTn(k) : eij ⋆ ejl = eil + λ−1δni δ

n
l (δ

n
j − 1)f, enn ⋆ f = f ⋆ enn = f, f2 = λf,

whereλ ∈ k∗.

Indeed, we start by discussing the algebra maps λ : Tn(k) → k. Denote λ(eij) = αij ∈ k,
for all eij ∈ B. Since e2ii = eii we have αii ∈ {0, 1}, for all i = 1, · · · , n. Moreover,
since char(k) = 0 and we assume λ to be unitary it follows that Σni=1αii = 1. Therefore,
αuu = 1, for some u ∈ {1, · · · , n} and αii = 0, for all i 6= u; we denote by λu this algebra
map. As eij = eiieij , for all i ≤ j, we obtain that αij = 0, for all i 6= u and i ≤ j. Finally,
since eujeuu = 0 and λu(euu) = 1, we obtain that αuj = 0, for any u < j. To conclude,
the set of algebra maps Tn(k) → k are in bijection to the set {1, · · · , n} and the algebra
map corresponding to some j ∈ {1, · · · , n} is given by λj(ejj) := 1 and λj(euv) := 0, for
all (u, v) 6= (j, j). The next step of the proof is a computational one: namely, for any
u, v ∈ {1, 2, · · · , n} we are left to compute the set of all (λv, Λu)-cocycles ϑ. This is
achieved by straightforward but lengthy checking of (17) which in this case comes down
to the following compatibility condition:

ϑ(eij , ersepq)− ϑ(eijers, epq) = ϑ(eij , ers)Λ
u − ϑ(ers, epq)λ

v (40)

with i ≤ j, r ≤ s and p ≤ q. Rather than including here the cumbersome computations
we will just point out the main steps taken; the detailed proof can be provided upon
request. First, notice that since (40) is not symmetric with respect to the maps λv and
Λu we distinguish three cases, namely: u = v, u < v and respectively u > v. For the
case u = v the (λu, Λu)-cocycles obtained are implemented by a family of (n−u) scalars
and a matrix of trace zero with zeros on the line u strictly above the diagonal. Then,
it can be proved that any such cocycle is equivalent (in the sense of (26)) to a cocycle
implemented by a matrix in Mu. The corresponding co-flag algebras are those denoted
by Tn(k)uA. If u < v then any (λv, Λu)-cocycle is equivalent to a cocycle implemented
by (n − v) scalars and a matrix in Mu,v. The corresponding co-flag algebras are those
denoted by Tn(k)u,vB,Γ. Finally, u > v then any (λv, Λu)-cocycle is equivalent to a cocycle

implemented by two families of (n− v) and respectively (u− v− 1) scalars and a matrix

in M
u,v

. The corresponding co-flag algebras are those denoted by Tn(k)v,uC,Ψ,Ω. Finally,

the last family of co-flag algebras, denoted by λTn(k), corresponds to a co-flag datum
of the second kind associated (δn, λ), where δn(i) = δni is the Kronecker symbol and
λ ∈ k∗.

Moreover, for n = 2 we can also write down in a transparent way the other classifying
object, namely HOC (T2(k), k). By a long but straightforward computation it can easily
be seen that HOC (T2(k), k) contains the algebras whose multiplication is depicted below
together with the direct product of algebras T2(k)× k:
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⋆ e11 e12 e22 f
e11 e11 e12 0 f
e12 0 0 e12 0
e22 0 0 e22 0
f f 0 0 0

⋆ e11 e12 e22 f
e11 e11 e12 0 0
e12 0 0 e12 0
e22 0 0 e22 f
f 0 0 f 0

⋆ e11 e12 e22 f
e11 e11 − f e12 f 0
e12 0 0 e12 0
e22 −f 0 e22 − f f
f 0 0 f 0

⋆ e11 e12 e22 f
e11 e11 e12 0 f
e12 0 0 e12 0
e22 0 0 e22 0
f 0 0 f 0

⋆ e11 e12 e22 f
e11 e11 e12 − f 0 f
e12 f 0 e12 − f 0
e22 0 f e22 0
f 0 0 f 0

⋆ e11 e12 e22 f
e11 e11 e12 0 0
e12 0 0 e12 0
e22 0 0 e22 f
f f 0 0 0

⋆ e11 e12 e22 f
e11 e11 e12 + f 0 0
e12 0 0 e12 0
e22 0 0 e22 f
f f 0 0 0

3. Applications to coalgebras and Poisson algebras

In this section we shall present two applications of our results to the theory of coalgebras
and respectively Poisson algebras, the latter being the algebraic counterpart of Poisson
manifolds. Our strategy is to use two different contravariant functors which have both the
category of algebras as a codomain, namely the linear dual functor (−)∗ := Homk (−, k)
and respectively Fun (−) := C∞(−) the real smooth functions on a Poisson manifold
functor.

Supersolvable coalgebras. We recall that a coalgebra C = (C, ∆, ε) is a vector space
C equipped with a comultiplication ∆ : C → C ⊗ C and a counit ǫ : C → k such that
(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆ and (Id⊗ ε) ◦∆ = (ε⊗ Id) ◦∆ = Id, where ⊗ = ⊗k and Id is
the identity map on C. We use the Σ-notation for comultiplication: ∆(c) = c(1) ⊗ c(2),
for all c ∈ C (summation understood). The base field k, with the obvious structures, is
the final object in the category of coalgebras. We only provide some basic information
of coalgebras, referring the reader to [11] for more detail. If C = (C, ∆, ε) is a colgebra,
then the linear dual C∗ = Homk(C, k) is an associative algebra under the convolution
product (f ∗ g)(c) := f(c(1))g(c(2)), for all f , g ∈ C∗ and c ∈ C having the unit 1C∗ = ε.
Conversely, if A is a finite dimensional algebra with a basis {ei | i = 1, · · · , n}, then the
linear dual A∗ is a coalgebra with the comultiplication and the counit given for any
i = 1, · · · , n by:

∆A∗(e∗i ) :=

n
∑

j,l=1

e∗i (ejel) e
∗
j ⊗ e∗l , εA∗(e∗i ) := e∗i (1A) (41)

where {e∗i | i = 1, · · · , n} is the dual basis of {ei | i = 1, · · · , n}. The contravariant
functor (−)∗ := Homk (−, k) gives a duality between the category of all finite dimensional
coalgebras and the category of finite dimensional algebras [11]. Having the supersolvable
Lie algebras [9] as a source of inspiration we introduce the following concept:
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Definition 3.1. A coalgebra C is called supersolvable if there exists a positive integer
n such that C has a finite chain of subcoalgebras

k ∼= C1 ⊂ C2 ⊂ · · · ⊂ Cn := C (42)

such that Ci has codimension 1 in Ci+1, for all i = 1, · · · , n− 1.

Any supersolvable coalgebra is finite dimensional and the definition is equivalent to
the fact that dim(Ci) = i, for all i = 1, · · · , n. Furthermore, since any supersolvable
coalgebra C contains a 1-dimensional subcolagebra, we obtain that G(C) 6= ∅, where
G(C) is the space of group-like elements of C. Using the duality given by the functor
(−)∗ it follows that a finite dimensional coalgebra C is supersolvable if and only if
its convolution algebra C∗ is a co-flag algebra in the sense of Definition 2.1 and vice-
versa: a finite dimensional algebra A is a co-flag algebra if and only if its dual A∗ is a
supersolvable coalgebra. Thus, the results obtained in the previous section can be applied
for the classification problem of supersolvable coalgebras of a given dimension.2 Using the
above facts, Corollary 2.18 classifies in fact all 3-dimensional supersolvable coalgebras:
the isomorphism classes are the duals A∗ of the algebras listed in the statement. For
example, the dual coalgebra associated to the noncommutative algebra k < x, y |x2 =
1, y2 = 0, xy = −yx = y > is the non-cocommutative supersolvable coalgebra having
{f1, f2, f3} as a basis and the comultiplication and the counit given by:

∆(f1) := f1 ⊗ f1 + f2 ⊗ f2, ∆(f2) := f1 ⊗ f2 + f2 ⊗ f1, ε(f1) := 1, ε(f2) := 0

∆(f3) := f1 ⊗ f3 + f3 ⊗ f1 + f2 ⊗ f3 − f3 ⊗ f2, ε(f3) := 0

The coalgebra obtained in this way is indeed supersolvable by choosing C1 := k(f1 − f2)
(we observe that f1±f2 is a group-like element) and C2 := kf1+kf2 as the intermediary
coalgebras of dimension 1 respectively 2 in the sequence (42).

Another application of our theory of Section 1 is the following: let C be a finite di-
mensional coalgebra, n a positive integer and V := kn. Then by taking the convolution
algebra A := C∗ we obtain that the object GH

2 (C∗, kn) classifies, up to an isomorphism
which stabilizes C and costabilizes kn, all coalgebras which contain C as a subcoalgebra
of codimension n. Moreover, a coalgebra D contains C as a subcoalgebra of codimension
n if and only if D is isomorphic to the dual coalgebra (C∗ ⋆ kn)∗ of a Hochschild product
C∗ ⋆ kn between the convolution algebra C∗ and the vector space kn. The formula for
the comultiplication of any such coalgebra (C∗ ⋆ kn)∗ can be written down effectively
by using (41) and (3). This observation shows that the GE-problem applied for finite
dimensional algebras and finite dimensional vector spaces gives the answer at the level
of finite dimensional coalgebras to what we have called the extending structures problem
studied in [2, 4, 5] for Jacobi, Lie and respectively associative algebras.

Applications to Poisson algebras. Commutative Poisson algebras are algebraic coun-
terparts of Poisson manifolds from differential geometry: for a given smooth manifoldM ,
there is a one-to-one correspondence between Poisson brackets on the commutative alge-
bra P := C∞(M) of smooth functions on M and all Poisson structures on M [22]. The

2The classification of solvable Lie algebras [20], over arbitrary fields, was achieved up to dimension 4.
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importance of Poisson algebras in several areas of mathematics and physics (Hamilton-
ian mechanics, differential geometry, Lie groups, noncommutative algebraic/diferential
geometry, (super)integrable systems, quantum field theory, vertex operator algebras,
quantum groups) it is also well known – see [21, 22, 30] and the references therein. In
fact, C∞(−) gives a contravariant functor from the category of Poisson manifolds to the
category of Poisson algebras and constitutes the tool through which geometrical prob-
lems can be restated and approached at the level of Poisson algebras. In particular, the
GE-problem, formulated for Poisson algebras, is just the algebraic counterpart of the
following question from differential geometry: Let M be a Poisson manifold. Describe
and classify all Poisson manifolds containing M as a manifold of a given codimension.

We recall that a Poisson algebra is a triple P = (P, mP , [−, −]), where (P,mP ) is a
unital associative algebra, (P, [−, −]) is a Lie algebra such that the Leibniz law holds
for any p, q, r ∈ P :

[pq, r] = [p, r] q + p [q, r] (43)

Usually, a Poisson algebra P is by definition assumed to be commutative like the algebra
P := C∞(M) of real smooth functions on a Poisson manifold M which is the typical
example of a Poisson algebra. However, following [18, 29] in order to broaden the class
of Poisson algebras and to be able to construct relevant examples, throughout this paper
we do not impose this restriction. A morphism between two Poisson algebras P and P ′

is a linear map ϕ : P → P ′ that is a morphism of associative algebras as well as of Lie
algebras; we will denote by AutPoss(P ) the group of automorphisms of a Poisson algebra
P . For basic concepts and unexplained notions on Lie algebras we refer to [16] and to
[30] for those concerning Poisson algebras.

Let P = (P, mP ) be an algebra and u ∈ k. Then (P,mP , [−, −]u) is a Poisson algebra,
where [a, b]u := u(ab − ba), for all a, b ∈ P . In particular, any associative algebra
P = (P, mP ) is a Poisson algebra with the abelian Lie bracket, i.e. [a, b] := 0, for all
a, b ∈ P . On the other hand, let g = (g, [−, −]g) be a Lie algebra with a linear basis
{ei | i ∈ I}. Then the symmetric algebra P := S(g) of g (i.e. the polynomial algebra
k[ei | i ∈ I]) is a Poisson algebra with the bracket defined by [ei, ej] := [ei, ej ]g, for all i,
j ∈ I and extended to the entire algebra k[ei | i ∈ I] via the Leibniz law (43).

If P is a Poisson algebra then the direct product P × k is a Poisson algebra with the
direct product structures of associative/Lie algebra: that is the multiplication and the
bracket is defined for any p, q ∈ P and x, y ∈ k by:

(p, x) ⋆ (q, y) := (pq, xy), {(p, x), (q, y)} :=
(

[p, q], 0
)

(44)

Furthermore, the canonical projection πP : P × k → P , πP (p, x) := p is a surjective
Poisson algebra map having a 1-dimensional kernel. It what follows we shall classify all
Poisson algebras Q that admit a surjective Poisson algebra map Q → P → 0 with a
1-dimensional kernel. In order to do this we first recall from [3] the following concept:

Definition 3.2. A co-flag datum of a Poisson algebra P is a 5-tuple (λ, Λ, ϑ, γ, f),
where λ, Λ, γ : P → k are linear maps, ϑ, f : P × P → k are bilinear maps such that:

(CF1) (λ, Λ, ϑ) is a co-flag datum of the first kind of the associative algebra P
(CF2) λ([p, q]) = Λ([p, q]) = γ([p, q]) = f(p, p) = 0
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(CF3) f(p, [q, r]) + f(q, [r, p]) + f(r, [p, q]) + γ(p)f(q, r) + γ(q)f(r, p) + γ(r)f(p, q) = 0
(CF4) f(pq, r)− Λ(q)f(p, r)− λ(p)f(q, r) = γ(r)ϑ(p, q) + ϑ([p, r], q) + ϑ(p, [q, r])
(CF5) γ(pq) = γ(p)Λ(q) + λ(p)γ(q)

for all p, q, r ∈ P . We denote by F (P ) the set of all co-flag data of P .

The above concept was introduced in [3, Definition 3.2] under the name of ’abelian co-
flag datum’ of P . We dropped the adjective ’abelian’ since the other family of co-flag
datum introduced in [3, Definition 3.4] will generate a family of Poisson algebras which
are all isomorphic to the direct product P × k (see the proof of Theorem 3.3 below) –
hence, they are irrelevant from the classification view point.

Let (λ, Λ, ϑ, γ, f) ∈ F (P ) be a co-flag datum of a Poisson algebra P . Then we shall
denote by P(λ,Λ, ϑ, γ, f) := P × k the direct product of vector spaces which is a Poisson
algebra with the multiplication ⋆ and the bracket {−, −} defined [3, Section 3] for any
p, q ∈ P , x, y ∈ k by:

(p, x) ⋆ (q, y) := (pq, ϑ(p, q) + λ(p)y + Λ(q)x) (45)

{(p, x), (q, y)} :=
(

[p, q], f(p, q) + γ(p)y − γ(q)x
)

(46)

Now we can prove the following classification result: it is the Poisson version of The-
orem 2.8 and improves the classification given in [3, Theorem 3.6] where all Poisson
algebras Q having a Poisson surjection Q → P → 0 with a 1-dimensional kernel are
classified in a more restrictive fashion: up to an isomorphism which stabilizes k and
co-stabilizes P .

Theorem 3.3. Let P be a Poisson algebra. Then:

(1) A Poisson algebra Q has a surjective Poisson algebra map Q → P → 0 with a 1-
dimensional kernel if and only if Q ∼= P×k or Q ∼= P(λ,Λ, ϑ, γ, f), for some (λ, Λ, ϑ, γ, f) ∈
F (P ).

(2) Two Poisson algebras P(λ,Λ, ϑ, γ, f) and P(λ′,Λ′, ϑ′, γ′, f ′) are isomorphic if and only if
there exists a triple (s0, ψ, r) ∈ k∗×AutPoss(P )×Homk(P, k) such that for any p, q ∈ P :

λ = λ′ ◦ ψ, Λ = Λ′ ◦ ψ, γ = γ′ ◦ ψ (47)

ϑ(p, q) s0 = ϑ′
(

ψ(p), ψ(q)
)

+λ(p)r(q) + Λ(q)r(p)− r(pq) (48)

f(p, q) s0 = f ′
(

ψ(p), ψ(q)
)

+γ(p)r(q)− γ(q)r(p)− r([p, q]) (49)

(3) The Poisson algebras P(λ,Λ, ϑ, γ, f) and P × k are not isomorphic.

Proof. (1) Let Q be a Poisson algebra having a surjective Poisson algebra map Q →
P → 0 with 1-dimensional kernel. Then, using [3, Proposition 2.4 and Proposition 3.5]

we obtain that Q ∼= P(λ,Λ, ϑ, γ, f), for some (λ, Λ, ϑ, γ, f) ∈ F (P ) or Q ∼= P (λ, ϑ, u), where
u ∈ k \ {0}, λ : P → k is a unit preserving linear map, ϑ : P × P → k is a bilinear map
satisfying the following two compatibilities for any p, q, r ∈ P :

λ(pq) = λ(p)λ(q)− u θ(p, q), θ(p, qr)− θ(pq, r) = θ(p, q)λ(r)− θ(q, r)λ(p) (50)
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which we called in [3, Definition 3.4] a non-abelian co-flag datum of P . The Poisson

algebra P (λ, ϑ, u) is the vector space P × k having the multiplication and the Poisson
bracket defined by:

(p, x) ⋆ (q, y) := (pq, ϑ(p, q) + λ(p)y + λ(q)x+ uxy) (51)

{(p, x), (q, y)} :=
(

[p, q], −u−1 λ([p, q])
)

(52)

for all p, q ∈ P and x, y ∈ k. Since u 6= 0 we obtain from the first equation of (50) that

ϑ is implemented by u and λ by the formula ϑ(p, q) = u−1
(

λ(p)λ(q)−λ(pq)
)

and hence

the multiplication of the Poisson algebra P (λ, u) given by (51) takes the form:

(p, x) ⋆ (q, y) = (pq, u−1
(

λ(p)λ(q)− λ(pq)
)

+λ(p)y + λ(q)x+ uxy)

which is precisely (19). The first part is finished once we observe that the map given by

the formula (21), namely ϕ : P (λ, u) → P × k, ϕ(p, x) := (p, λ(p) + ux), for all p ∈ P
and x ∈ k is an isomorphism of Poisson algebras. Indeed, Remark 2.4 shows that ϕ is
an isomorphism of associative algebras; hence we only have to prove that it is also a Lie
algebra map, where the bracket on P (λ, u) is given by (52). A straightforward compu-

tation shows that ϕ
(

{(p, x), (q, y)}
)

= [ϕ(p, x), ϕ(q, y)]P×k =
(

[p, q], 0
)

and thus any

Poisson algebra P (λ, u) is in fact isomorphic to the direct product of Poisson algebras
P × k.

(2) The first step in proving Theorem 2.8 gives a bijection between all associative algebra
isomorphism corresponding to the Poisson algebras P(λ,Λ, ϑ, γ, f) and P(λ′,Λ′, ϑ′, γ′, f ′) and
the set of all triples (s0, ψ, r) ∈ k∗ × AutAlg(P ) × Homk(P, k) satisfying (48) and the
first two compatibilities of (47). The bijection is given such that the associative algebra
isomorphism ϕ = ϕ(s0, ψ, r) : P(λ,Λ, ϑ, γ, f) → P(λ′,Λ′, ϑ′, γ′, f ′) associated to (s0, ψ, r) is

given by the formula (33), that is ϕ(p, x) =
(

ψ(p), r(p) + x s0
)

, for all p ∈ P and
x ∈ k. The proof will be finished if we show that such a map ϕ = ϕ(s0, ψ, r) is also a
morphism of Lie algebras if and only if ψ is an automorphism of the Lie algebra P =
(P, [−, −]) and the last equation of (47) and (49) hold. This is an elementary fact: by

a straightforward computation we can show that ϕ
(

{(p, 0), (q, 0)}
)

= {ϕ(p, 0), ϕ(q, 0)}
if and only if ψ : P → P is a Lie algebra map and (49) holds. In a similar fashion

ϕ
(

{(p, 0), (0, x)}
)

= {ϕ(p, 0), ϕ(0, x)} if and only if γ = γ′ ◦ ψ. The rest of the details

are left to the reader.

(3) Follows from step (2) of the proof of Theorem 2.8 which proves that the associative
algebras P(λ,Λ, ϑ, γ, f) and P × k are never isomorphic. �

Corollary 3.4. Let P be a Poisson algebra for which there is no algebra map P → k
or P is perfect as a Lie algebra, i.e. P = [P, P ]. Then, up to an isomorphism, the only
Poisson algebra Q for which there exists a surjective algebra map Q → P → 0 having a
1-dimensional kernel is the direct product P × k of Poisson algebras.

Proof. The proof follows from Theorem 3.3 since in both cases the set F (P ) is empty.
Indeed, the first case follows form Corollary 2.11, while if P is perfect as a Lie algebra
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then, using the compatibilities (CF2) we obtain that λ = Λ ≡ 0, the trivial maps, which
contradicts the fact that the algebra maps λ and Λ are unit preserving. �

The geometrical meaning of Corollary 3.4 is the following: ifM is a real Poisson manifold
such that the algebra C∞(M) of all real smooth functions on M is perfect as a Lie
algebra, then up to an isomorphism, there is only one Poisson manifold containing P
as a sub-manifold of codimension 1. The group of Poisson algebra automorphisms of
P(λ,Λ, ϑ, γ, f) can also be described. Using the proof of Theorem 3.3, the Poisson version
of Corollary 2.12 takes the following form:

Corollary 3.5. Let P be a Poisson algebra, (λ, Λ, ϑ, γ, f) ∈ F (P ) a co-flag datum of P
and let GP

(

P, (λ, Λ, ϑ, γ, f)
)

be the set of all triples (s0, ψ, r) ∈ k∗ ×AutPoss(P )× P ∗

satisfying the compatibility conditions (47)-(49) written for λ′ = λ, Λ′ = Λ, γ′ = γ,
ϑ′ = ϑ and f ′ = f . Then, there exists an isomorphism of groups

AutPoss
(

P(λ,Λ, ϑ, γ, f)

)∼= GP
(

P, (λ, Λ, ϑ, γ, f)
)

where the latter is a group with respect to the following multiplication:

(s0, ψ, r) · (s′0, ψ′, r′) := (s0s
′
0, ψ ◦ ψ′, r ◦ ψ′ + s0r

′)

for all (s0, ψ, r), (s
′
0, ψ

′, r′) ∈∈ GP
(

P, (λ, Λ, ϑ, γ, f)
)

. Moreover, the map

GP
(

P, (λ, Λ, ϑ, γ, f)
)

−→ P ∗
⋉ζ

(

k∗ ×AutPoss(P )
)

, (s0, ψ, r) 7→
(

s−1
0 r, (s0, ψ)

)

is an injective morphism of groups.

We end the paper with a relevant example which follows by a long computation based
on Theorem 3.3; the detailed proof can be provided upon request.

Example 3.6. Let k be a field of characteristic zero and P := H(3, k) the 3-dimensional
non-commutative Heisenberg-Poisson algebra: i.e., H(3, k) is the set of all upper tri-
angular 2 × 2 matrices with the usual multiplication and the Lie bracket given by
[x, y] := xy − yx. Consider {e11, e12, e22} a basis of H(3, k) over k. Then the set
of isomorphism types of all 4-dimensional Poisson algebras which admit a surjective
Poisson algebra map on H(3, k) are the ones listed below together with the usual direct
product H(3, k)× k (we only write down the non-zero products):

P1 : e11 ⋆ e11 = e11, e11 ⋆ e12 = e12, e12 ⋆ e22 = e12, e22 ⋆ e22 = e22,

e11 ⋆ f = f ⋆ e11 = f, {e11, e12} = e12, {e12, e22} = e12.

P2 : e11 ⋆ e11 = e11, e11 ⋆ e12 = e12, e12 ⋆ e22 = e12, e22 ⋆ e22 = e22,

e22 ⋆ f = f ⋆ e22 = f, {e11, e12} = e12, {e12, e22} = e12

P3 : e11 ⋆ e11 = e11, e11 ⋆ e12 = e12 − f, e12 ⋆ e11 = f, e12 ⋆ e22 = e12 − f

e22 ⋆ e12 = f, e22 ⋆ e22 = e22, e11 ⋆ f = f ⋆ e22 = f, {e11, e12} = e12,

{e12, e22} = e12, {e11, f} = f, {e22, f} = −f.
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Pω4 : e11 ⋆ e11 = e11, e11 ⋆ e12 = e12, e12 ⋆ e22 = e12, e22 ⋆ e22 = e22,

e11 ⋆ f = f ⋆ e22 = f, {e11, e12} = e12, {e12, e22} = e12,

{e11, f} = ωf, {e22, f} = −ωf, where ω ∈ k.

P τ5 : e11 ⋆ e11 = e11, e11 ⋆ e12 = e12, e12 ⋆ e22 = e12, e22 ⋆ e22 = e22,

e22 ⋆ f = f ⋆ e11 = f, {e11, e12} = e12, {e12, e22} = e12,

{e11, f} = τf, {e22, f} = −τf, where τ ∈ k.

We point out that, even if up to an isomorphism there are only 8 associative algebras
of dimension 4 with a surjective algebra map on the algebra H(3, k) (indicated at the
end of Example 2.19), the set of isomorphism types of Poisson algebras having the same
algebra structure can be infinite due to the 1-parameter families Pω4 and P τ5 .
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